Design and synthesis of low bandgap(LBG) polymer donors is inevitably challenging and their processability from a non-halogenated solvent system remains a hurdle to overcome in the area of highperformance polymer sola...Design and synthesis of low bandgap(LBG) polymer donors is inevitably challenging and their processability from a non-halogenated solvent system remains a hurdle to overcome in the area of highperformance polymer solar cells(PSCs).Due to a high aggregation tendency of LBG polymers,especially diketopyrrolopyrrole(DPP)-based polymers coupled with bithiophenes in the polymer backbones,their widespread adoption in non-ha logena ted solvent-processed PSCs has been limited.Herein,a novel LBG DPP-based polymer,called PDPP4 T-1 F with asymmetric arrangement of fluorine atom,has been successfully synthesized and showed an outstanding power conversion efficiency(PCE) of 10.10% in a singlejunction fullerene-based PSCs.Furthermore,an impressive PCE of 13.21% has been achieved in a tandem device from a fully non-halogenated solvent system,which integrates a wide bandgap PDTBTBz-2 F polymer in the bottom cell and LBG PDPP4 T-1 F polymer in the top cell.The achieved efficiency is the highest value reported in the literature to date in fullerene-based tandem PSCs.We found that a uniformly distributed interpenetrating fibril network with nano-scale phase separation and anisotropy of the polymer backbone orientation for efficient charge transfer/transport and suppressed charge recombination in PDPP4 T-1 F-based PSCs led to outstanding PCEs in single and tandem-junction PSCs.展开更多
Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y...Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.展开更多
基金support granted by the National Research Foundation(NRF)(NRF2020M3H4A3081813)by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)(No.20183010013820)by the Korea Research Institute of Chemical Technology(KRICT)(No.KS2022-00)of the Republic of Korea。
文摘Design and synthesis of low bandgap(LBG) polymer donors is inevitably challenging and their processability from a non-halogenated solvent system remains a hurdle to overcome in the area of highperformance polymer solar cells(PSCs).Due to a high aggregation tendency of LBG polymers,especially diketopyrrolopyrrole(DPP)-based polymers coupled with bithiophenes in the polymer backbones,their widespread adoption in non-ha logena ted solvent-processed PSCs has been limited.Herein,a novel LBG DPP-based polymer,called PDPP4 T-1 F with asymmetric arrangement of fluorine atom,has been successfully synthesized and showed an outstanding power conversion efficiency(PCE) of 10.10% in a singlejunction fullerene-based PSCs.Furthermore,an impressive PCE of 13.21% has been achieved in a tandem device from a fully non-halogenated solvent system,which integrates a wide bandgap PDTBTBz-2 F polymer in the bottom cell and LBG PDPP4 T-1 F polymer in the top cell.The achieved efficiency is the highest value reported in the literature to date in fullerene-based tandem PSCs.We found that a uniformly distributed interpenetrating fibril network with nano-scale phase separation and anisotropy of the polymer backbone orientation for efficient charge transfer/transport and suppressed charge recombination in PDPP4 T-1 F-based PSCs led to outstanding PCEs in single and tandem-junction PSCs.
基金the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(Grant No.2021R1A2C3008724).
文摘Organic solar cells(OSCs)have reached an outstanding certified power conversion efficiency(PCE)of over 19%in single junction and 20%in tandem architecture design.Such high PCEs have emerged with outstanding Y-shaped Y6 non-fullerene acceptors(NFAs),together with PM6 electron donor polymers.PCEs are on the rise for small-area OSCs.However,large-area OSC sub-modules are still unable to achieve such high PCEs,and the highest certified PCE reported so far is∼12%having an area of 58 cm2.To fabricate efficient large-area OSCs,new custom-designed NFAs for large-area systems are imminent along with improvements in the sub-module fabrication platforms.Moreover,the search for stable yet efficient OSCs is still in progress.In this review,progress in small-area OSCs is presented with reference to the advancement in the chemical structure of NFAs and donor polymers.Finally,the life-cycle assessment of OSCs is presented and the energy payback time of the efficient and stable OSCs is discussed and lastly,an outlook for the OSCs is given.