期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Uniform and Homogeneous Growth of Copper Nanoparticles on Electrophoretically Deposited Carbon Nanotubes Electrode for Nonenzymatic Glucose Sensor 被引量:1
1
作者 Syeda Ammara shahzadi shamaila +2 位作者 Rehana Sharif Sheeba Ghani Nosheen Zafar 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第10期889-894,共6页
The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose ... The multiwalled carbon nanotubes thin-film-based electrode was fabricated by electrophoretic deposition and modified with copper (Cu) nanoparticles to fabricate Cu/CNTs nanocomposite sensor for nonenzymatic glucose detection. The expensive glassy carbon electrode was replaced by fluorine-doped tin oxide glass containing CNTs film to confine the Cu nanoparticles growth by electrodeposition through cyclic voltammetry (CV). The ultraviolet visible and X-ray diffraction analysis revealed the successful deposition of Cu nanoparticles on the CNTs-modified electrode. The atomic force microscopy images confirrqed the morphology of electrodeposited Cu on CNTs film as uniformly dispersed particles. The electrocatalytic activity of electrode to the glucose oxidation was investigated in alkaline medium by CV and amperometric measurements. The fabricated sensor exhibited a fast response time of less than 5 s and the sensitivity of 314 μA rnM^-1 cm^-2 with linear concentration range (0.02-3.0 mM) having detection limit 10.0 μM. Due to simple preparation of sensor, Cu/CNTs nanocomposite electrodes are a suitable candidate for reliable determination of glucose with good stability. 展开更多
关键词 Electrophoretic deposition (EPD) Fluorine-doped tin oxide (FTO) substrate Carbon nanotubes Copper nanoparticles Nonenzymatic electrocatalysis Glucose sensor
原文传递
Antibacterial Action of Chemically Synthesized and Laser Generated Silver Nanoparticles against Human Pathogenic Bacteria
2
作者 Nosheen Zafar shahzadi shamaila +5 位作者 Jawad Nazir Rehana Sharif Muhammad Shahid Rafique Jalees Ul-Hasan Syeda Ammara Hina Khalid 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期721-728,共8页
Silver nanoparticles in the range of 10-40 nm were synthesized chemically and by laser ablation, em- ployed for in vitro antibacterial action against human pathogenic bacterium. Their formation was evidenced by UV-vis... Silver nanoparticles in the range of 10-40 nm were synthesized chemically and by laser ablation, em- ployed for in vitro antibacterial action against human pathogenic bacterium. Their formation was evidenced by UV-visible spectrophotometer; particle size confirmed by atomic force microscopy, crystal structure determined by X-ray diffraction and chemical composition investigated by Fourier transform infrared spec- troscopy. The calculated MIC (minimum inhibitory concentration) of chemically synthesized nanoparticles with 30-40 nm in size are 2.8 μg/mL 4.37 μg/mL 13.5μg/mL and 2.81 p.g/mL for E. coil, S. aureus, B. subtillis and Salmonella, respectively. Whereas laser ablated nanoparticles exhibit MIC of 2.10 μg/mL 2.36 μg/ mL and 2.68 μg/mL for E. coli, S. aureus and Salmonella, respectively. 展开更多
关键词 Chemically synthesized and laser ablated nanoparticles UV-visible spectrophotometer Gram negative and gram positive bacteria
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部