For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pa...For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.展开更多
Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiv...Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines(SVM),Random Forest,K-Neighbors Regressor,and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method,named AD-PRS-Guided WOA,was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain.展开更多
基金funded by Taif University Researchers Supporting Project No.(TURSP-2020/214),Taif University,Taif,Saudi Arabia。
文摘For a 5G wireless communication system,a convolutional deep neural network(CNN)is employed to synthesize a robust channel state estimator(CSE).The proposed CSE extracts channel information from transmit-and-receive pairs through offline training to estimate the channel state information.Also,it utilizes pilots to offer more helpful information about the communication channel.The proposedCNN-CSE performance is compared with previously published results for Bidirectional/long short-term memory(BiLSTM/LSTM)NNs-based CSEs.The CNN-CSE achieves outstanding performance using sufficient pilots only and loses its functionality at limited pilots compared with BiLSTM and LSTM-based estimators.Using three different loss function-based classification layers and the Adam optimization algorithm,a comparative study was conducted to assess the performance of the presented DNNs-based CSEs.The BiLSTM-CSE outperforms LSTM,CNN,conventional least squares(LS),and minimum mean square error(MMSE)CSEs.In addition,the computational and learning time complexities for DNN-CSEs are provided.These estimators are promising for 5G and future communication systems because they can analyze large amounts of data,discover statistical dependencies,learn correlations between features,and generalize the gotten knowledge.
文摘Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines(SVM),Random Forest,K-Neighbors Regressor,and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method,named AD-PRS-Guided WOA,was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain.