期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of normal stress, surface roughness, and initial grain size on the microstructure of copper subjected to platen friction sliding deformation 被引量:3
1
作者 shan-quan deng Andrew-William Godfrey +2 位作者 Wei Liu Cheng-lu Zhang Ben Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第1期57-69,共13页
The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case... The effects of applied normal stress, surface roughness, and initial grain size on the microstructure of pure Cu developed during platen friction sliding deformation (PFSD) processing were investigated. In each case, the deformation microstructure was characterized and the hardness of the treated surface layer was measured to evaluate its strength. The results indicated that the thickness of the deformed layer and the hardness at any depth increased with increasing normal stress. A smaller steel platen surface roughness resulted in less microstruc- tural refinement, whereas the microstructural refinement was enhanced by decreasing the surface roughness of the Cu sample. In the case of a very large initial grain size (d 〉 10 mm), a sharper transition from fine-grain microstructure to undeformed material was obtained in the treated surface layer after PFSD processing. 展开更多
关键词 COPPER surface treatment processing parameters grain refinement gradient microstructure HARDNESS
下载PDF
Analysis of Stored Energy in Cold-Rolled Copper Using Bulk and Microstructure-Based Techniques
2
作者 shan-quan deng Andy Godfrey Wei Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第4期313-319,共7页
Measurements of stored energy have been obtained for samples of copper cold-rolled to von Mises strains between 0.42 and 5.21 using both differential scanning calorimetry (DSC), and based on measurements of microstr... Measurements of stored energy have been obtained for samples of copper cold-rolled to von Mises strains between 0.42 and 5.21 using both differential scanning calorimetry (DSC), and based on measurements of microstructural parameters in the transmission electron microscope (TEM). In both cases, a linear increase in stored energy with strain is found. The ratio between the two measured values varies, however, over a significant range, indicating that some caution is needed in determining the relative difference in energy associated with deformation microstructure heterogeneities in a given sample. Comparison of the stored energy with the flow stress suggests that the TEM-based measurements reflect the dislocation density content responsible for the flow stress, but that the DSC technique additionally measures other contributions to the stored energy, such as the presence of balanced internal stresses. 展开更多
关键词 Stored energy Differential scanning calorimetry MICROSTRUCTURE Flow stress COPPER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部