Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spac...Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.展开更多
In this paper, we study the well-posedness of the third-order differential equation with finite delay(P3): αu’"(t) + u"(t) = Au(t) + Bu’(t) + Fut +f(t)(t ∈ T := [0,2π]) with periodic boundary conditions...In this paper, we study the well-posedness of the third-order differential equation with finite delay(P3): αu’"(t) + u"(t) = Au(t) + Bu’(t) + Fut +f(t)(t ∈ T := [0,2π]) with periodic boundary conditions u(0) = u(2π), u’(0) = u"(2π),u"(0)=u"(2π) in periodic Lebesgue-Bochner spaces Lp(T;X) and periodic Besov spaces Bp,qs(T;X), where A and B are closed linear operators on a Banach space X satisfying D(A) ∩ D(B) ≠ {0}, α≠ 0 is a fixed constant and F is a bounded linear operator from Lp([-2π, 0];X)(resp. Bp,qs([-2π, 0];X)) into X, ut is given by ut(s) = u(t + s) when s ∈ [-2π,0]. Necessary and sufficient conditions for the Lp-well-posedness(resp. Bp,qs-well-posedness)of(P3) are given in the above two function spaces. We also give concrete examples that our abstract results may be applied.展开更多
We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivat...We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).展开更多
We study the well-posedness of the equations with fractional derivative D^αu(t) = Au(t) + f(t),0≤ t ≤ 2π, where A is a closed operator in a Banach space X, α 〉 0 and D^α is the fractional derivative in t...We study the well-posedness of the equations with fractional derivative D^αu(t) = Au(t) + f(t),0≤ t ≤ 2π, where A is a closed operator in a Banach space X, α 〉 0 and D^α is the fractional derivative in the sense of Weyl. Using known results on LP-multipliers, we give necessary and/or sufficient conditions for the LP-well-posedness of this problem. The conditions we give involve the resolvent of A and the Rademacher boundedness. Corresponding results on the well-posedness of this problem in periodic Besov spaces, periodic Triebel-Lizorkin spaces and periodic Hardy spaces are also obtained.展开更多
基金supported by the NSF of China (No. 10571099)Specialized Research Fund for the Doctoral Program of Higher Educationthe Tsinghua Basic Research Foundation (JCpy2005056)
文摘Using known Ca-multiplier result, we give necessary and sufficient conditions for the second order delay equations:u″(t)=Au(t)+Fut+Gu′+f(t),t∈Rto have maximal regularity in HSlder continuous function spaces C^α (R, X), where X is a Banach space, A is a closed operator in X, F, G ∈L(C([-r, 0], X), X) are delay operators for some fixed r 〉 0.
基金Supported by the NSF of China(Grant Nos.11571194,11731010 and 11771063)the Natural Science Foundation of Chongqing(Grant No.cstc2017jcyjAX0006)+2 种基金Science and Technology Project of Chongqing Education Committee(Grant No.KJ1703041)the University Young Core Teacher Foundation of Chongqing(Grant No.020603011714)Talent Project of Chongqing Normal University(Grant No.02030307-00024)
文摘In this paper, we study the well-posedness of the third-order differential equation with finite delay(P3): αu’"(t) + u"(t) = Au(t) + Bu’(t) + Fut +f(t)(t ∈ T := [0,2π]) with periodic boundary conditions u(0) = u(2π), u’(0) = u"(2π),u"(0)=u"(2π) in periodic Lebesgue-Bochner spaces Lp(T;X) and periodic Besov spaces Bp,qs(T;X), where A and B are closed linear operators on a Banach space X satisfying D(A) ∩ D(B) ≠ {0}, α≠ 0 is a fixed constant and F is a bounded linear operator from Lp([-2π, 0];X)(resp. Bp,qs([-2π, 0];X)) into X, ut is given by ut(s) = u(t + s) when s ∈ [-2π,0]. Necessary and sufficient conditions for the Lp-well-posedness(resp. Bp,qs-well-posedness)of(P3) are given in the above two function spaces. We also give concrete examples that our abstract results may be applied.
基金Supported by National Natural Science Foundation of China (Grant No.10731020)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.200800030059)
文摘We study the well-posedness of the equations with fractional derivative D^αu(t)= Au(t) + f(t) (0 ≤ t ≤ 2π), where A is a closed operator in a Banach space X, 0 〈 α 〈 1 and D^αis the fractional derivative in the sense of Weyl. Although this problem is not always well-posed in L^P(0, 2π; X) or periodic continuous function spaces Cper([0, 2π]; X), we show by using the method of sum that it is well-posed in some subspaces of L^P(0, 2π; X) or Cper ([0, 2π]; X).
基金Supported by National Natural Science Foundation of China (Grant No. 10731020)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200800030059)
文摘We study the well-posedness of the equations with fractional derivative D^αu(t) = Au(t) + f(t),0≤ t ≤ 2π, where A is a closed operator in a Banach space X, α 〉 0 and D^α is the fractional derivative in the sense of Weyl. Using known results on LP-multipliers, we give necessary and/or sufficient conditions for the LP-well-posedness of this problem. The conditions we give involve the resolvent of A and the Rademacher boundedness. Corresponding results on the well-posedness of this problem in periodic Besov spaces, periodic Triebel-Lizorkin spaces and periodic Hardy spaces are also obtained.