Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of wh...Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of whether LFV can work properly under a surrounding external magnetic field(ExMF). Two types of Ex MFs with different magnetic intensities were examined: a magnetic field with a typical order of 0.4 T generated by a permanent magnet(PM) and another generated by an electromagnet(EM) on the order of 2 T. Two forces, including the magnetostatic force between the Ex MF and PM in the LFV, and the Lorentz force generated by the PM in LFV were measured and analyzed in the experiment. In addition,Ex MFs of varying strengths were added to the LFV, and the location of the LFV device in the iron cores of the EM was considered. The experimental outcomes demonstrate that it is possible for a LFV device to operate normally under a moderate Ex MF. However, the magnetostatic force will account for a high proportion of the measured force,thus inhibiting the normal LFV operation, if the Ex MF is too high.展开更多
基金supported by the National Natural Science Foundation of China(No.51374190)the Major Equipment Fund of Chinese Academy of Sciences(No.YZ201567)
文摘Lorentz force velocimetry(LFV) is a noncontact technique for measuring electrically conducting fluids based on the principle of electromagnetic induction. This work aims to answer the open and essential question of whether LFV can work properly under a surrounding external magnetic field(ExMF). Two types of Ex MFs with different magnetic intensities were examined: a magnetic field with a typical order of 0.4 T generated by a permanent magnet(PM) and another generated by an electromagnet(EM) on the order of 2 T. Two forces, including the magnetostatic force between the Ex MF and PM in the LFV, and the Lorentz force generated by the PM in LFV were measured and analyzed in the experiment. In addition,Ex MFs of varying strengths were added to the LFV, and the location of the LFV device in the iron cores of the EM was considered. The experimental outcomes demonstrate that it is possible for a LFV device to operate normally under a moderate Ex MF. However, the magnetostatic force will account for a high proportion of the measured force,thus inhibiting the normal LFV operation, if the Ex MF is too high.