t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with ...t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.展开更多
基金Supported by the National Natural Science Foundation of China(No.11171020,10961004)the Henan Province Foundation and Frontier Technology Research Plan(No.112300410205)+1 种基金the Education Department of Henan Science and Technology Research Key Project(No.13A110543)the Doctoral Fundamental Research Fund of Hennan Normal University(11102)
文摘t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.