期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Pd single atoms cooperate with S vacancies in ZnIn_(2)S_(4) nanosheets for photocatalytic pure-water splitting
1
作者 Lin Sun Huiping Peng +7 位作者 Fei Xue shangheng liu Zhiwei Hu Hongbo Geng Xiaozhi liu Dong Su Yong Xu Xiaoqing Huang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期855-861,共7页
Photocatalytic water splitting has emerged as a new frontier for converting solar energy to green H_(2) and value-added chemicals.Nevertheless,great challenges still remain for developing efficient photocatalysts for ... Photocatalytic water splitting has emerged as a new frontier for converting solar energy to green H_(2) and value-added chemicals.Nevertheless,great challenges still remain for developing efficient photocatalysts for pure water splitting without sacrificial agents.In this work,we demonstrate that doping hexagonal ZnIn_(2)S_(4)(ZIS) with Pd single atoms(Pd_(0.03)/ZIS) can serve as a highly efficient photocatalyst for pure water splitting to simultaneously produce H_(2) and H_(2)O_(2) without any sacrificial agents.Results from aberration-corrected high-angle annular dark field scanning transmission electron microscopy,X-ray fine spectroscopy,insitu electron paramagnetic resonance and diffuse Fourier transform infrared spectroscopy reveal that doping ZIS with Pd single atoms facilitates the formation of S vacancies(S_(v)),where the photogenerated electrons can transfer to Pd single atoms,as a result of enhanced separation of electron-hole pairs and improved photocatalytic performance.Impressively,Pd_(0.03)/ZIS displays a stoichiometric ratio of H_(2) and H_(2)O_(2) with the productivity of 1,037.9 and 1,021.4μmol g^(-1)h^(-1),respectively,which has largely outperformed pure ZIS and other reported catalysts for pure water splitting.This work provides an efficient photocatalyst for water splitting to produce H_(2) and H_(2)O_(2),which may attract rapid interest in materials science,chemistry,and heterogeneous catalysis. 展开更多
关键词 ZnIn_(2)S_(4) Pd single atom S vacancy pure water splitting H_(2)O_(2)
原文传递
Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts
2
作者 Bingyan Xu Xuan Huang +6 位作者 shangheng liu Zhiwei Hu Cheng-Wei Kao Ting-Shan Chan Hongbo Geng Ying Zhang Xiaoqing Huang 《Nano Research》 SCIE EI CSCD 2024年第3期1042-1049,共8页
Developing electrocatalysts with fast kinetics and long-term stability for alkaline hydrogen oxidation reaction(HOR)and hydrogen evolution reaction(HER)is of considerable importance for the industrial production of gr... Developing electrocatalysts with fast kinetics and long-term stability for alkaline hydrogen oxidation reaction(HOR)and hydrogen evolution reaction(HER)is of considerable importance for the industrial production of green and sustainable energy.Here,an ultrathin Ir-Sb nanowires(Ir-Sb NWs)protected by antimony oxides(SbO_(x))was synthesized as an efficient bifunctional catalyst for both HOR and HER under alkaline media.Except from the much higher mass activities of Ir-Sb nanowires than those of Ir nanowires(Ir NWs)and commercial Pt/C,the SbO_(x) protective layer also contributes to the maintenance of morphology and anti-CO poisoning ability,leading to the long-term cycling performance in the presence of CO.Specifically,the Ir-Sb NW/SbO_(x) exhibits the highest catalytic activities,which are about 3.5 and 4.8 times to those of Ir NW/C and commercial Pt/C toward HOR,respectively.This work provides that the ultrathin morphology and H_(2)O-occupied Sb sites can exert the intrinsic high activity of Ir and effectively optimize the absorption of OH*both in alkaline HER/HOR electrolysis. 展开更多
关键词 Ir nanowire amorphous antimony oxides bifunctional mechanism hydrogen evolution reaction hydrogen oxidation reaction
原文传递
Single-Site Cu-Doped PdSn Wavy Nanowires for Highly Active,Stable,and CO-Tolerant Ethanol Oxidation Electrocatalysis
3
作者 Jiaqi Su Jie Feng +8 位作者 Yonggang Feng shangheng liu Bingyan Xu Yue Lin Jinyu Ye Ying Zhang Youyong Li Qi Shao Xiaoqing Huang 《Precision Chemistry》 2023年第6期363-371,共9页
Developing a catalyst to break the tradeoff relation-ship between the catalytic activity and antipoisoning property toward the ethanol oxidation reaction(EOR)is of critical importance to the development of direct etha... Developing a catalyst to break the tradeoff relation-ship between the catalytic activity and antipoisoning property toward the ethanol oxidation reaction(EOR)is of critical importance to the development of direct ethanol fuel cells(DEFCs),but remains challenging.Here,we developed a unique class of single-site Cu-doped PdSn wavy nanowires(denoted as SS Cu−PdSn WNWs)with promoted activity and durability toward alkaline EOR.Detailed characterizations reveal the atomic isolation of Cu species dispersed on the surface of the PdSn WNWs with distinct wavy structure and grain boundaries.The created SS Cu−PdSn WNWs exhibit an enhanced EOR performance in terms of mass activity,which is higher than those of PdSn WNWs,commercial Pd black,and commercial Pd/C,respectively.Moreover,the SS Cu−PdSn WNWs can also show improved stability as compared to other catalysts due to the improved antipoisoning property from the unique surface anchoring structure.Further investigations demonstrate that the doped SS Cu can strongly inhibit the adsorption of CO and promote the reaction process of EOR.DFT results reveal that the doped Cu shifts down the d-band center of PdSn,thereby modifying the adsorption of intermediates and reducing the reaction barrier of EOR.This work maps a pathway for optimally boosting EOR performance with surface engineering via atomic doping. 展开更多
关键词 single site PDSN NANOWIRE ethanol oxidation reaction CO tolerant ELECTROCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部