The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were c...The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were carried out to investigate the optimization of Hg0 capture. Furthermore, our experimental results about optimum conditions to remove Hg0 were 1:10 of sulfur to activated carbon impregnation ratio, 350°C of impregnation temperature, and 3 hours of impregnation time. This research showed that the prepared adsorbents were capable to remove remarkable amount of Hg0 (23.615 mg/g) at high adsorption efficiency. This study may serve as reference on natural gas power plants for the removal of Hg0 using the same conditions.展开更多
文摘The present work reports the synthesis and application of sulfur doped into porous activated carbon for removing elemental mercury from natural gas using a bench-scale fixed-bed reactor. A series of experiments were carried out to investigate the optimization of Hg0 capture. Furthermore, our experimental results about optimum conditions to remove Hg0 were 1:10 of sulfur to activated carbon impregnation ratio, 350°C of impregnation temperature, and 3 hours of impregnation time. This research showed that the prepared adsorbents were capable to remove remarkable amount of Hg0 (23.615 mg/g) at high adsorption efficiency. This study may serve as reference on natural gas power plants for the removal of Hg0 using the same conditions.