期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Toxicity of the disinfectant benzalkonium chloride(C_(14))towards cyanobacterium Microcystis results from its impact on the photosynthetic apparatus and cell metabolism
1
作者 Yunlu Jia Yi Huang +4 位作者 Jin Ma shangwei zhang Jin Liu Tianli Li Lirong Song 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期198-209,共12页
Quaternary ammonium compounds(QACs)are commonly used in a variety of consumer and commercial products,typically as a component of disinfectants.During the COVID-19 pandemic,QACs became one of the primary agents utiliz... Quaternary ammonium compounds(QACs)are commonly used in a variety of consumer and commercial products,typically as a component of disinfectants.During the COVID-19 pandemic,QACs became one of the primary agents utilized to inactivate the SARS CoV-2 virus on surfaces.However,the ecotoxicological effects of QACs upon aquatic organisms have not been fully assessed.In this study,we examined the effects of a widely used QAC(benzalkonium chloride-C_(14),BAC-14)on two toxigenic Microcystis strains and one non-toxigenic freshwater Microcystis strain and carried out an analysis focused on primary,adaptive and compensatory stress responses at apical(growth and photosynthesis)and metabolic levels.This analysis revealed that the two toxic Microcystis strains were more tolerant than the non-toxic strain,with 96 hr-EC_(50)values of 0.70,0.76,and 0.38 mg/L BAC-14 for toxigenic M.aeruginosa FACHB-905,toxigenic M.aeruginosa FACHB-469,and non-toxigenic M.wesenbergii FACHB-908,respectively.The photosynthetic activities of the Microcystis,assessed via F_(v)/F_(m) values,were significantly suppressed under 0.4 mg/L BAC-14.Furthermore,this analysis revealed that BAC-14 altered 14,12,and 8 metabolic pathways in M.aeruginosa FACHB-905,M.aeruginosa FACHB-469,and M.wesenbergii FACHB-908,respectively.It is noteworthy that BAC-14 enhanced the level of extracellular microcystin production in the toxigenic Microcystis strains,although cell growth was not significantly affected.Collectively,these data show that BAC-14 disrupted the physiological and metabolic status of Microcystis cells and stimulated the production and release of microcystin,which could result in damage to aquatic systems. 展开更多
关键词 DISINFECTANTS Quaternary ammonium compounds MICROCYSTIS CYANOTOXIN Metabolomics Chlorophyll fluorescence
原文传递
Spatial and vertical variations of perfluoroalkyl substances in sediments of the Haihe River,China 被引量:9
2
作者 Xiuli Zhao Xinghui Xia +2 位作者 shangwei zhang Qiong Wu Xuejun Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第8期1557-1566,共10页
The levels of six perfluoroalkyl substances(PFASs) in surface sediment and their vertical variations in dated sediment cores from the Haihe River were investigated; studied substances included perfluorooctanoic acid... The levels of six perfluoroalkyl substances(PFASs) in surface sediment and their vertical variations in dated sediment cores from the Haihe River were investigated; studied substances included perfluorooctanoic acid(PFOA),perfluorononanoic acid(PFNA),perfluorooctane sulfonate(PFOS),perfluorodecanoic acid(PFDA),perfluoroundecanoic acid(PFUnA),and perfluorododecanoic acid(PFDoA). Results showed that the total PFAS concentration in surface sediment ranged between 0.52 and 16.33 ng/g dry weight(dw) with an average of3.47 ng/g dw,with PFOS and PFOA as the dominant PFASs. In general,the PFAS concentrations in the mainstream increased from the upper to the lower reaches,except that a drop occurred downstream of the Erdao dam. Although the PFASs in the sediment cores did not show a clear decreasing or increasing trend with depth,the three cores had a similar vertical variation.The PFAS levels were relatively low in the surface sediment,and reached the first high point at8–20 cm as a result of the wide use of PFASs from 1990 to 2000. After that the PFAS levels decreased,and then increased to a second high point at about 40–48 cm,which might be caused by the leaching of PFASs in sediment. Because PFASs have hydrophilic groups and relatively high solubility,the PFASs will transfer from the upper to lower layers of sediment when water infiltration occurs,leading to the fluctuation of PFAS levels in sediment cores. This study suggests that both the temporal variation of sources and transfer processes of PFASs in sediments are important factors influencing the vertical variation of PFASs in sediment cores. 展开更多
关键词 Perfluoroalkyl substances(PFASs) Sediment core Sediment quality Haihe River
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部