期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Visual experimental study of nanofluids application to promote CO_(2) absorption in a bubble column
1
作者 shangyuan cheng Guisheng Qi +1 位作者 Yuliang Li Yixuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期228-237,共10页
The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or mic... The addition of dispersed-phase nanoparticles in the liquid phase can enhance the gas-liquid transfer process as the suspended nanoparticles affect the transfer process inside the fluid through microdisturbance or micro-convection effects.In this article,a high-speed digital camera was used to visualize the bubble behavior of CO_(2) in pure water and nanofluids to examine the effects of CO_(2) gas flow rate,nanoparticle solid content and type on the bubble behavior in the fluids.The CO_(2) absorption performance in three water-based nanofluids were compared in a bubbler.And the mass transfer characteristics during CO_(2) bubble absorption and the reasons for the enhanced gas-liquid mass transfer effect of nanoparticles were analyzed.The results showed that the presence of nanoparticles affected the formation process of bubbles in the fluid,shortened the bubble detachment time,reduced the detachment diameter,effectively increased the gas-liquid contact area,and improved the bubbles detachment frequency.The system with MCM-41 corresponded to a higher overall mass transfer coefficient.Uncalined MCM-41 contained surfactant that enhanced foaming behavior in water.This prevented the transfer of CO_(2) to some extent,and the CO_(2) absorption by uncalined MCM-41/H_(2)O was 5.34%higher than that by pure water.Compared with SiO_(2) nanoparticles with the same particle size and the same composition,MCM-41 had a higher adsorption capacity and better hydrophilicity due to its larger specific surface area and rich porous structure,which was more favorable to accelerate the collision between nanoparticles and CO_(2) bubbles to cause micro-convection.Under the condition of 0.1%(mass)solid content,the enhancement of CO_(2) absorption process by MCM-41 nanoparticles was more significant and improved by 16.9%compared with pure water. 展开更多
关键词 Nanofluids CO_(2) absorption Mass transfer MCM-41 Bubble column
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部