期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Adaptive optimisation of explosive reactive armour for protection against kinetic energy and shaped charge threats
1
作者 Philipp Moldtmann Julian Berk +5 位作者 shannon ryan Andreas Klavzar Jerome Limido Christopher Lange Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期1-12,共12页
We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod proj... We evaluate an adaptive optimisation methodology,Bayesian optimisation(BO),for designing a minimum weight explosive reactive armour(ERA)for protection against a surrogate medium calibre kinetic energy(KE)long rod projectile and surrogate shaped charge(SC)warhead.We perform the optimisation using a conventional BO methodology and compare it with a conventional trial-and-error approach from a human expert.A third approach,utilising a novel human-machine teaming framework for BO is also evaluated.Data for the optimisation is generated using numerical simulations that are demonstrated to provide reasonable qualitative agreement with reference experiments.The human-machine teaming methodology is shown to identify the optimum ERA design in the fewest number of evaluations,outperforming both the stand-alone human and stand-alone BO methodologies.From a design space of almost 1800 configurations the human-machine teaming approach identifies the minimum weight ERA design in 10 samples. 展开更多
关键词 Terminal ballistics Armour Explosive reactive armour Optimisation Bayesian optimisation
下载PDF
Machine learning for predicting the outcome of terminal ballistics events
2
作者 shannon ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 Machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
下载PDF
A bayesian optimisation methodology for the inverse derivation of viscoplasticity model constants in high strain-rate simulations
3
作者 shannon ryan Julian Berk +2 位作者 Santu Rana Brodie McDonald Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1563-1577,共15页
We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide ... We present an inverse methodology for deriving viscoplasticity constitutive model parameters for use in explicit finite element simulations of dynamic processes using functional experiments, i.e., those which provide value beyond that of constitutive model development. The developed methodology utilises Bayesian optimisation to minimise the error between experimental measurements and numerical simulations performed in LS-DYNA. We demonstrate the optimisation methodology using high hardness armour steels across three types of experiments that induce a wide range of loading conditions: ballistic penetration, rod-on-anvil, and near-field blast deformation. By utilising such a broad range of conditions for the optimisation, the resulting constitutive model parameters are generalised, i.e., applicable across the range of loading conditions encompassed the by those experiments(e.g., stress states, plastic strain magnitudes, strain rates, etc.). Model constants identified using this methodology are demonstrated to provide a generalisable model with superior predictive accuracy than those derived from conventional mechanical characterisation experiments or optimised from a single experimental condition. 展开更多
关键词 Constitutive modelling Finite element Bayesian optimisation Finite element model updating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部