Single electron transition reactions between amines(Lewis base)and B(C_(6)F_(5))_(3)(Lewis acid)in cooperation with benzoquinones gave rise to a frustrated radical pair 3 and a nonfrustrated radical pair 4.Both of the...Single electron transition reactions between amines(Lewis base)and B(C_(6)F_(5))_(3)(Lewis acid)in cooperation with benzoquinones gave rise to a frustrated radical pair 3 and a nonfrustrated radical pair 4.Both of them were isolated as stable crystals and studied by single-crystal X-ray diffraction,superconducting quantum interference device measurements,electron paramagnetic resonance,nuclear magnetic resonance,and UV–vis spectroscopy.Antiferromagnetic exchange coupling was observed among both 3 and 4.Radical anion and cation are basically separated in 3,while 4 featured a relatively strong anion-cationπ–πstacking interaction.This work demonstrated that the Lewis acid coupled electron transfer is an efficient way to prepare stable radical ion pairs.展开更多
基金the National Key R&D Program of China(grant no.2018YFA0306004)the National Natural Science Foundation of China(grant no.21525102)for their financial support.
文摘Single electron transition reactions between amines(Lewis base)and B(C_(6)F_(5))_(3)(Lewis acid)in cooperation with benzoquinones gave rise to a frustrated radical pair 3 and a nonfrustrated radical pair 4.Both of them were isolated as stable crystals and studied by single-crystal X-ray diffraction,superconducting quantum interference device measurements,electron paramagnetic resonance,nuclear magnetic resonance,and UV–vis spectroscopy.Antiferromagnetic exchange coupling was observed among both 3 and 4.Radical anion and cation are basically separated in 3,while 4 featured a relatively strong anion-cationπ–πstacking interaction.This work demonstrated that the Lewis acid coupled electron transfer is an efficient way to prepare stable radical ion pairs.