The objective of this study is to investigate the feasibility of using chitosanesodium alginate(CSeSA)based matrix tablets for extended-release of highly water-soluble drugs by changing formulation variables.Using tri...The objective of this study is to investigate the feasibility of using chitosanesodium alginate(CSeSA)based matrix tablets for extended-release of highly water-soluble drugs by changing formulation variables.Using trimetazidine hydrochloride(TH)as a water-soluble model drug,influence of dissolution medium,the amount of CSeSA,the CS:SA ratio,the type of SA,the type and amount of diluents,on in vitro drug release from CSeSA based matrix tablets were studied.Drug release kinetics and release mechanisms were elucidated.In vitro release experiments were conducted in simulated gastric fluid(SGF)followed by simulated intestinal fluid(SIF).Drug release rate decreased with the increase of CSeSA amount.CS:SA ratio had only slight effect on drug release and no influence of SA type on drug release was found.On the other hand,a large amount of water-soluble diluents could modify drug release profiles.It was found that drug release kinetics showed the best fit to Higuchi equation with Fickian diffusion as the main release mechanism.In conclusion,this study demonstrated that it is possible to design extended-release tablets of watersoluble drugs using CSeSA as the matrix by optimizing formulation components,and provide better understanding about drug release from CSeSA matrix tablets.展开更多
Background:Head and neck squamous cell carcinoma(HNSCC)is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis,high lymph node metastasis and early recurrence.However,the mole...Background:Head and neck squamous cell carcinoma(HNSCC)is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis,high lymph node metastasis and early recurrence.However,the molecular events regulating HNSCC tumorigenesis remain poorly understood.Therefore,uncovering the underlying mechanisms is urgently needed to identify novel and promising therapeutic targets for HNSCC.In this study,we aimed to explore the role of pleckstrin-2(PLEK2)in regulating HNSCC tumorigenesis.Methods:The expression pattern of PLEK2 and its clinical significance in HNSCC were determined by analyzing publicly assessable datasets and our own independent HNSCC cohort.In vitro and in vivo experiments,including cell proliferation,colony formation,Matrigel invasion,tumor sphere formation,ALDEFLUOR,Western blotting assays and xenograft mouse models,were used to investigate the role of PLEK2 in regulating the malignant behaviors of HNSCC cells.The underlying molecular mechanisms for the tumor-promoting role of PLEK2 were elucidated using co-immunoprecipitation,cycloheximide chase analysis,ubiquitination assays,chromatin immunoprecipitation-quantitative polymerase chain reaction,luciferase reporter assays and rescue experiments.Results:The expression levels of PLEK2 mRNA and protein were significantly increased in HNSCC tissues,and PLEK2 overexpression was strongly associated with poor overall survival and therapeutic resistance.Additionally,PLEK2 was important for maintaining the proliferation,invasion,epithelial-mesenchymal transition,cancer stemness and tumorigenesis of HNSCC cells and could alter the cellular metabolism of the cancer cells.Mechanistically,PLEK2 interacted with c-Myc and reduced the association of F-box and WD repeat domain containing 7(FBXW7)with c-Myc,thereby avoiding ubiquitination and subsequent proteasome-mediated degradation of c-Myc.Moreover,the c-Myc signaling activated by PLEK2 was important for sustaining the aggressive malignant phenotypes and tumorigenesis of HNSCC cells.c-Myc also directly bounded to the PLEK2 promoter and activated its transcription,forming a positive feedback loop.Conclusions:Collectively,these findings uncover a previously unknown molecular basis of PLEK2-enhanced c-Myc signaling in HNSCC,suggesting that PLEK2 may represent a promising therapeutic target for treating HNSCC.展开更多
基金supported by Liaoning Institutions excellent talents support plan(No.LR2013047).
文摘The objective of this study is to investigate the feasibility of using chitosanesodium alginate(CSeSA)based matrix tablets for extended-release of highly water-soluble drugs by changing formulation variables.Using trimetazidine hydrochloride(TH)as a water-soluble model drug,influence of dissolution medium,the amount of CSeSA,the CS:SA ratio,the type of SA,the type and amount of diluents,on in vitro drug release from CSeSA based matrix tablets were studied.Drug release kinetics and release mechanisms were elucidated.In vitro release experiments were conducted in simulated gastric fluid(SGF)followed by simulated intestinal fluid(SIF).Drug release rate decreased with the increase of CSeSA amount.CS:SA ratio had only slight effect on drug release and no influence of SA type on drug release was found.On the other hand,a large amount of water-soluble diluents could modify drug release profiles.It was found that drug release kinetics showed the best fit to Higuchi equation with Fickian diffusion as the main release mechanism.In conclusion,this study demonstrated that it is possible to design extended-release tablets of watersoluble drugs using CSeSA as the matrix by optimizing formulation components,and provide better understanding about drug release from CSeSA matrix tablets.
基金National Natural Science Foundation of China,Grant/Award Number:81901006Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110051+1 种基金Scientific Research Talent Cultivation Project of Stomatological Hospital,Southern Medical University,Grant/Award Number:RC202005Science Research Cultivation Program of Stomatological Hospital,Southern Medical University,Grant/Award Number:PY2020002。
文摘Background:Head and neck squamous cell carcinoma(HNSCC)is one of the most frequent malignancies worldwide and is characterized by unfavorable prognosis,high lymph node metastasis and early recurrence.However,the molecular events regulating HNSCC tumorigenesis remain poorly understood.Therefore,uncovering the underlying mechanisms is urgently needed to identify novel and promising therapeutic targets for HNSCC.In this study,we aimed to explore the role of pleckstrin-2(PLEK2)in regulating HNSCC tumorigenesis.Methods:The expression pattern of PLEK2 and its clinical significance in HNSCC were determined by analyzing publicly assessable datasets and our own independent HNSCC cohort.In vitro and in vivo experiments,including cell proliferation,colony formation,Matrigel invasion,tumor sphere formation,ALDEFLUOR,Western blotting assays and xenograft mouse models,were used to investigate the role of PLEK2 in regulating the malignant behaviors of HNSCC cells.The underlying molecular mechanisms for the tumor-promoting role of PLEK2 were elucidated using co-immunoprecipitation,cycloheximide chase analysis,ubiquitination assays,chromatin immunoprecipitation-quantitative polymerase chain reaction,luciferase reporter assays and rescue experiments.Results:The expression levels of PLEK2 mRNA and protein were significantly increased in HNSCC tissues,and PLEK2 overexpression was strongly associated with poor overall survival and therapeutic resistance.Additionally,PLEK2 was important for maintaining the proliferation,invasion,epithelial-mesenchymal transition,cancer stemness and tumorigenesis of HNSCC cells and could alter the cellular metabolism of the cancer cells.Mechanistically,PLEK2 interacted with c-Myc and reduced the association of F-box and WD repeat domain containing 7(FBXW7)with c-Myc,thereby avoiding ubiquitination and subsequent proteasome-mediated degradation of c-Myc.Moreover,the c-Myc signaling activated by PLEK2 was important for sustaining the aggressive malignant phenotypes and tumorigenesis of HNSCC cells.c-Myc also directly bounded to the PLEK2 promoter and activated its transcription,forming a positive feedback loop.Conclusions:Collectively,these findings uncover a previously unknown molecular basis of PLEK2-enhanced c-Myc signaling in HNSCC,suggesting that PLEK2 may represent a promising therapeutic target for treating HNSCC.