A fabrication process based on the self-assembling polystyrene spheres is proposed to obtain hole arrayed metal-insulator-metal (HA-MIM) structure for surface enhanced Raman scattering (SERS). The localized field ...A fabrication process based on the self-assembling polystyrene spheres is proposed to obtain hole arrayed metal-insulator-metal (HA-MIM) structure for surface enhanced Raman scattering (SERS). The localized field enhancement aroused by the gap resonance in the HA-MIM structure is analyzed by finite-different time domain (FDTD) method. With reference to the theory result, the structure is experimentally fabricated and the Raman scattering spectrum of rhodamine 6G (R6G) is measured by a miniaturized Raman spectrometer. The results shows that the enhancement factor is 3.85 times higher than the control sample with single layered metal hole array. The fabrication process to obtain the HA-MIM SERS substrate is reproducible, fast, large area and low cost.展开更多
文摘A fabrication process based on the self-assembling polystyrene spheres is proposed to obtain hole arrayed metal-insulator-metal (HA-MIM) structure for surface enhanced Raman scattering (SERS). The localized field enhancement aroused by the gap resonance in the HA-MIM structure is analyzed by finite-different time domain (FDTD) method. With reference to the theory result, the structure is experimentally fabricated and the Raman scattering spectrum of rhodamine 6G (R6G) is measured by a miniaturized Raman spectrometer. The results shows that the enhancement factor is 3.85 times higher than the control sample with single layered metal hole array. The fabrication process to obtain the HA-MIM SERS substrate is reproducible, fast, large area and low cost.