Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-o...Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetrybreaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking(reverse)period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter β increases, etc.展开更多
基金Supported by the National Natural Science Foundation of China(No.11361037,11371132)the Natural Science Foundation of Hunan Province(No.11JJ3012)the Graduate Innovation Fund of Hunan Province(No.CX2011B183)
文摘Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetrybreaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking(reverse)period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter β increases, etc.