期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Bifurcations of Periodic Solutions and Chaos in Josephson System with Parametric Excitation 被引量:1
1
作者 shao-liang yuan Zhu-jun JING 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第2期335-368,共34页
Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-o... Josephson system with parametric excitation is investigated. Using second-order averaging method and Melnikov function, we analyze the existence and bifurcations for harmonic,(2, 3, n-order) subharmonics and(2, 3-order) superharmonics and the heterocilinic and homoclinic bifurcations for chaos under periodic perturbation. Using numerical simulation, we check our theoretical analysis and further study the effect of the parameters on dynamics. We find the complex dynamics, including the jumping behaviors, symmetrybreaking, chaos converting to periodic orbits, interior crisis, non-attracting chaotic set, interlocking(reverse)period-doubling bifurcations from periodic orbits, the processes from interlocking period-doubling bifurcations of periodic orbits to chaos after strange non-chaotic motions when the parameter β increases, etc. 展开更多
关键词 Josephson system BIFURCATIONS CHAOS second-order averaging method Melnikov method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部