期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries:A review
1
作者 Hua-ming YU Dong-ping CHEN +6 位作者 Li-jin ZHANG shao-zhen huang Liang-jun ZHOU Gui-chao KUANG Wei-feng WEI Li-bao CHEN Yue-jiao CHEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3118-3150,共33页
Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrit... Aqueous zinc-ion batteries(AZIBs) are promising candidates for the large-scale energy storage systems due to their high intrinsic safety,cost-effectiveness and environmental friendliness.However,issues such as dendrite growth,hydrogen evolution reaction,and interfacial passivation occurring at the anode/electrolyte interface(AEI) have hindered their practical application.Constructing a stable AEI plays a key role in regulating zinc deposition and improving the cycle life of AZIBs.The fundamentals of AEI and the challenges faced by the Zn anode due to unstable interfaces are discussed.A comprehensive summary of electrolyte regulation strategies by electrolyte engineering to achieve a stable Zn anode is provided.The effectiveness evaluation techniques for stable AEI are also analyzed,including the interfacial chemistry and surface morphology evolution of the Zn anode.Finally,suggestions and perspectives for future research are offered about enabling a durable and stable AEI via electrolyte engineering,which may pave the way for developing high-performance AZIBs. 展开更多
关键词 aqueous zinc-ion battery anode/electrolyte interface zinc anode aqueous electrolyte electrolyte engineering electrolyte additives
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部