期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of deficit irrigation with saline water on spring wheat growth and yield in arid Northwest China 被引量:11
1
作者 Jing JIANG ZaiLin HUO +3 位作者 shaoyuan feng ShaoZhong KANG FenXing WANG ChaoBo ZHANG 《Journal of Arid Land》 SCIE CSCD 2013年第2期143-154,共12页
Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three sali... Field experiments were conducted in 2008 and 2009 to study the effects of deficit irrigation with saline water on spring wheat growth and yield in an arid region of Northwest China. Nine treatments included three salinity levels sl, s2 and s3 (0.65, 3.2, and 6.1 dS/m) in combination with three water levels wl, w2 and w3 (375, 300, and 225 mm). In 2008, for most treatments, deficit irrigation showed adverse effects on wheat growth; meanwhile, the effect of saline irrigation was not apparent. In 2009, growth parameters of wl treatments were not always optimal under saline irrigation. At 3.2 and 6.1 dS/m in 2008, the highest yield was obtained by wl treatments, however, in 2009, the weight of 1,000 grains and wheat yield both followed the order w2 〉 wl 〉 w3. In this study, spring wheat was sensitive to water deficit, especially at the booting to grain-filling stages, but was not significantly affected by saline irrigation and the combination of the two factors. The results demonstrated that 300-mm irrigation water with a salinity of less than 3.2 dS/m is suitable for wheat fields in the study area. 展开更多
关键词 saline water irrigation leaf area index (LAI) leaf potential yield components
下载PDF
Detecting winter canola(Brassica napus) phenological stages using an improved shape-model method based on time-series UAV spectral data 被引量:1
2
作者 Chao Zhang Zi’ang Xie +5 位作者 Jiali Shang Jiangui Liu Taifeng Dong Min Tang shaoyuan feng Huanjie Cai 《The Crop Journal》 SCIE CSCD 2022年第5期1353-1362,共10页
Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on th... Accurate information about phenological stages is essential for canola field management practices such as irrigation, fertilization, and harvesting. Previous studies in canola phenology monitoring focused mainly on the flowering stage, using its apparent structure features and colors. Additional phenological stages have been largely overlooked. The objective of this study was to improve a shape-model method(SMM) for extracting winter canola phenological stages from time-series top-of-canopy reflectance images collected by an unmanned aerial vehicle(UAV). The transformation equation of the SMM was refined to account for the multi-peak features of the temporal dynamics of three vegetation indices(VIs)(NDVI, EVI, and CI). An experiment with various seeding scenarios was conducted, including four different seeding dates and three seeding densities. Three mathematical functions: asymmetric Gaussian function(AGF), Fourier function, and double logistic function, were employed to fit timeseries vegetation indices to extract information about phenological stages. The refined SMM effectively estimated the phenological stages of canola, with a minimum root mean square error(RMSE) of 3.7 days for all phenological stages. The AGF function provided the best fitting performance, as it captured multiple peaks in the growth dynamics characteristics for all seeding date scenarios using four scaling parameters. For the three selected VIs, CIred-edgeachieved the greatest accuracy in estimating the phenological stage dates. This study demonstrates the high potential of the refined SMM for estimating winter canola phenology. 展开更多
关键词 Time-seriesⅥ Asymmetric Gaussian function Phenological stage Shape model Remote sensing
下载PDF
Effects of irrigation water salinity on soil salt content distribution,soil physical properties and water use efficiency of maize for seed production in arid Northwest China 被引量:6
3
作者 Chengfu Yuan shaoyuan feng +2 位作者 Juan Wang Zailin Huo Quanyi Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期137-145,共9页
In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four diff... In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing. 展开更多
关键词 saline water irrigation soil salt content distribution soil physical properties maize for seed production water use efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部