Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to dire...Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of^(25)Mg(p,γ)^(26)Al,^(19)F(p,α)^(16)O,^(13)C(α,n)^(16)O and ^(12)C(α,γ)^(16)O reactions. The experimental setup,which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.展开更多
In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar...In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key 19F(p,a)16O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.展开更多
Few fishes have evolved elevated body temperatures compared with ambient temperatures,and only in opah(Lampris spp)is the entire body affected.To understand the molecular basis of endothermy,we analyzed the opah genom...Few fishes have evolved elevated body temperatures compared with ambient temperatures,and only in opah(Lampris spp)is the entire body affected.To understand the molecular basis of endothermy,we analyzed the opah genome and identified 23 genes with convergent amino acid substitutions across fish,birds,and mammals,including slc8b1,which encodes the mitochondrial Na+/Ca2+exchanger and is essential for heart function andmetabolic heat production.Among endothermic fishes,44 convergent genes with suggestive metabolic functions were identified,such as glrx3,encoding a crucial protein for hemoglobin maturation.Numerous genes involved in the production and retention of metabolic heat were also found to be under positive selection.Analyses of opah’s unique inner-heat-producing pectoral muscle layer(PMI),an evolutionary key innovation,revealed that many proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation.Thus,the opah genome provides valuable resources and opportunities to uncover the genetic basis of thermal adaptations in fish.展开更多
Both the LUNA(Laboratory for Underground Nuclear Astrophysics)collaboration in Europe and the JUNA(Jinping Underground Laboratory for Nuclear Astrophysics)collaboration in China are planning to study the key react...Both the LUNA(Laboratory for Underground Nuclear Astrophysics)collaboration in Europe and the JUNA(Jinping Underground Laboratory for Nuclear Astrophysics)collaboration in China are planning to study the key reactions during the stellar helium burning at or close to their stellar energies in deep underground laboratories[1-3].展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11490560 and 11321064)the National Basic Research Program of China(Grant No.2013CB834406)
文摘Jinping Underground laboratory for Nuclear Astrophysics(JUNA) will take the advantage of the ultra-low background of CJPL lab and high current accelerator based on an ECR source and a highly sensitive detector to directly study for the first time a number of crucial reactions occurring at their relevant stellar energies during the evolution of hydrostatic stars. In its first phase, JUNA aims at the direct measurements of^(25)Mg(p,γ)^(26)Al,^(19)F(p,α)^(16)O,^(13)C(α,n)^(16)O and ^(12)C(α,γ)^(16)O reactions. The experimental setup,which includes an accelerator system with high stability and high intensity, a detector system, and a shielding material with low background, will be established during the above research. The current progress of JUNA will be given.
基金supported by the National Natural Science Foundation of China(Grant Nos.114905621149056011135005 and 11321064)
文摘In 2014, the National Natural Science Foundation of China (NSFC) approved the Jinping Underground Nuclear Astrophysics laboratory (JUNA) project, which aims at direct cross-section measurements of four key stellar nuclear reactions right down to the Gamow windows. In order to solve the observed fluorine overabundances in Asymptotic Giant Branch (AGB) stars, measuring the key 19F(p,a)16O reaction at effective burning energies (i.e., at Gamow window) is established as one of the scientific research sub-projects. The present paper describes this sub-project in details, including motivation, status, experimental setup, yield and background estimation, aboveground test, as well as other relevant reactions.
基金supported by the Key ResearchProgramof Frontier Sciences ofCAS(ZDBS-LY-DQC004)the Special Foundation for National Science and Technology Basic Research Program of China(2018FY100100)+4 种基金the National Natural Science Foundation of China(41825013)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0407)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0401)the Guangdong Special Support Program of Leading Scientific and Technological Innovation(2017 T X04N442)the Grants by the German Science Foundation(DFG)。
文摘Few fishes have evolved elevated body temperatures compared with ambient temperatures,and only in opah(Lampris spp)is the entire body affected.To understand the molecular basis of endothermy,we analyzed the opah genome and identified 23 genes with convergent amino acid substitutions across fish,birds,and mammals,including slc8b1,which encodes the mitochondrial Na+/Ca2+exchanger and is essential for heart function andmetabolic heat production.Among endothermic fishes,44 convergent genes with suggestive metabolic functions were identified,such as glrx3,encoding a crucial protein for hemoglobin maturation.Numerous genes involved in the production and retention of metabolic heat were also found to be under positive selection.Analyses of opah’s unique inner-heat-producing pectoral muscle layer(PMI),an evolutionary key innovation,revealed that many proteins were co-opted from dorsal swimming muscles for thermogenesis and oxidative phosphorylation.Thus,the opah genome provides valuable resources and opportunities to uncover the genetic basis of thermal adaptations in fish.
基金the equipment research and development project of Chinese Academy of Sciences(Grant No.28Y531040)support from the National Natural Science Foundation of China(Grants Nos.11021504,11321064,11475228,and 11490564)+2 种基金the National Key Basic Research Program of China(Grants No.2016YFA0400501)the 100 Talents Program of the Chinese Academy of Sciencessupport from the National Science Foundation for Young Scientists of China(Grant No.11405228)
文摘Both the LUNA(Laboratory for Underground Nuclear Astrophysics)collaboration in Europe and the JUNA(Jinping Underground Laboratory for Nuclear Astrophysics)collaboration in China are planning to study the key reactions during the stellar helium burning at or close to their stellar energies in deep underground laboratories[1-3].