In this paper,a novel time–frequency(TF)analysis method,called the short-time Fourier transform using odd symmetric window function(OSTFT),is proposed using odd symmetric window function to replace the conventional e...In this paper,a novel time–frequency(TF)analysis method,called the short-time Fourier transform using odd symmetric window function(OSTFT),is proposed using odd symmetric window function to replace the conventional even window function of STFT.Different from conventional STFT acquiring the amplitude maximum at time and frequency centers,OSTFT acquires the minimum amplitude of 0.Hence,OSTFT can obtain a TF representation(TFR)with high TF resolution by utilizing the leaked energy rather than restraining it.It is worth to mention that the proposed OSTFT can vitiate the effect of window size we choose on the TFR obtained.Furthermore,it also has a good performance on signals with complex instantaneous frequencies(IFs),even crossing IFs.Because we just replace the conventional window function of STFT,the time-consuming of the proposed OSTFT is at the same level as the conventional STFT.The effectiveness of proposed OSTFT has been validated on two complex multi-component simulated numerical signals and a signal collected from the brown bat.展开更多
Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corruga- tions,...Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corruga- tions, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.展开更多
文摘In this paper,a novel time–frequency(TF)analysis method,called the short-time Fourier transform using odd symmetric window function(OSTFT),is proposed using odd symmetric window function to replace the conventional even window function of STFT.Different from conventional STFT acquiring the amplitude maximum at time and frequency centers,OSTFT acquires the minimum amplitude of 0.Hence,OSTFT can obtain a TF representation(TFR)with high TF resolution by utilizing the leaked energy rather than restraining it.It is worth to mention that the proposed OSTFT can vitiate the effect of window size we choose on the TFR obtained.Furthermore,it also has a good performance on signals with complex instantaneous frequencies(IFs),even crossing IFs.Because we just replace the conventional window function of STFT,the time-consuming of the proposed OSTFT is at the same level as the conventional STFT.The effectiveness of proposed OSTFT has been validated on two complex multi-component simulated numerical signals and a signal collected from the brown bat.
文摘Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corruga- tions, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.