期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
关于本原射影Reed-Solomon码的深洞 被引量:2
1
作者 徐小凡 洪绍方 许永超 《中国科学:数学》 CSCD 北大核心 2018年第8期1087-1094,共8页
本原射影Reed-Solomon码是数字通信领域中的一类重要的极大距离可分码.在本原射影ReedSolomon码的译码过程中,人们通常采用极大似然译码算法.对于一个收到的向量u∈F_q^n,极大似然译码算法关键在于确定向量u关于码C的错误距离d(u,C).熟... 本原射影Reed-Solomon码是数字通信领域中的一类重要的极大距离可分码.在本原射影ReedSolomon码的译码过程中,人们通常采用极大似然译码算法.对于一个收到的向量u∈F_q^n,极大似然译码算法关键在于确定向量u关于码C的错误距离d(u,C).熟知d(u,C)≤ρ(C),其中ρ(C)为码C的覆盖半径.若d(u,C)=ρ(C),则称u为码C的深洞.本文得到了本原射影Reed-Solomon码PPRS_q(F_q~*,k)的一类深洞.实际上,利用有限域F_q上极大距离可分码的生成矩阵,本文证明如下结果成立:如果q≥4,整数k满足2≤k≤q-2,收到的向量u的前q-1个分量的Lagrange插值多项式为u(x)=λx^(q-2)+f≤k-2(x),其中λ∈F_q~*,f≤k-2(x)为F_q上次数不超过k-2的多项式,并且u的第q个分量为0,那么u是本原射影Reed-Solomon码PPRSq(F_q~*,k)的一个深洞. 展开更多
关键词 本原射影Reed-Solomon码 MDS(maximum distance separable)码 深洞
原文传递
A Curious Identity on Multiple Sums over Fields with Applications 被引量:1
2
作者 Yongchao Xu shaofang hong 《Algebra Colloquium》 SCIE CSCD 2021年第2期295-308,共14页
Let F be a field,and let e,k be integers such that 1≤e≤|F\{0}|and k≥0.We show that for any subset{a1,……,ae}■F\{0},the curious identity∑(i1+……ie)∈Z^(e)≥0,i1+……+ie=k a_(1)^(i1)…a_(e)^(ie)=∑i=1 e a_(i)^(k+... Let F be a field,and let e,k be integers such that 1≤e≤|F\{0}|and k≥0.We show that for any subset{a1,……,ae}■F\{0},the curious identity∑(i1+……ie)∈Z^(e)≥0,i1+……+ie=k a_(1)^(i1)…a_(e)^(ie)=∑i=1 e a_(i)^(k+e-1)/∏i≠j=1 e(a_(i)-a_(j))holds with Z≥0 being the set of nonnegative integers.As an application,we prove that for any subset{a_(1)…,a_(e)}■F_(q)\{0}with F_(q)being the finite field of q elements and e,l being integers such that 2≤e≤q-1 and 0≤l≤e-2,∑(i_(1),…,i_(e))∈Z^(e)≥0,i_(1)+…i_(e)=q-e+l a_(1)^(i1)…a_(e)^(ie)=0 Using this identity and providing an extension of the principle of cross-classification that slightly generalizes the one obtained by Hong in 1996,we show that if r is an integer with 1≤r≤q-2,then for any subset{a_(1),…a_(r)}■F_(q)^(*)we have x^(q-1)-1/∏i=1 r(x-a_(i))-∑i=1 q-1-r(∑i_(1)+…+i_(r)=q-1-r-i^(a_(1)^(i1)…a_(r)^(ir)))x^(i).This implies#{x∈Fq*|∑i=0 q-1-4(∑_(i1)+…+ir=q-1-r-i^(a_(1)^(i1)…a_(r)^(ir)))x^(i)=0}=q-1-r. 展开更多
关键词 IDENTITY homogeneous polynomial zero polynomial field finite field decomposition generalized principle of cross-classification
原文传递
New Lower Bounds for the Least Common Multiples of Arithmetic Progressions 被引量:1
3
作者 Rongjun WU Qianrong TAN shaofang hong 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第6期861-864,共4页
Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers... Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010. 展开更多
关键词 Arithmetic progression Least common multiple Lower bound
原文传递
On Ordinary Words of Standard Reed-Solomon Codes over Finite Fields
4
作者 Xiaofan Xu shaofang hong 《Algebra Colloquium》 SCIE CSCD 2021年第4期569-580,共12页
Reed-Solomon codes are widely used to establish a reliable channel to transmit information in digital communication which has a strong error correction capability and a variety of efficient decoding algorithm.Usually ... Reed-Solomon codes are widely used to establish a reliable channel to transmit information in digital communication which has a strong error correction capability and a variety of efficient decoding algorithm.Usually we use the maximum likelihood decoding(MLD)algorithm in the decoding process of Reed-Solomon codes.MLD algorithm relies on determining the error distance of received word.Dür,Guruswami,Wan,Li,Hong,Wu,Yue and Zhu et al.got some results on the error distance.For the Reed-Solomon code C,the received word u is called an ordinary word of C if the error distance d(u,C)=n-deg u(x)with u(x)being the Lagrange interpolation polynomial of u.We introduce a new method of studying the ordinary words.In fact,we make use of the result obtained by Y.C.Xu and S.F.Hong on the decomposition of certain polynomials over the finite field to determine all the ordinary words of the standard Reed-Solomon codes over the finite field of q elements.This completely answers an open problem raised by Li and Wan in[On the subset sum problem over finite fields,Finite Fields Appl.14(2008)911-929]. 展开更多
关键词 Reed-Solomon code ordinary word Lagrange interpolation polynomial finite field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部