期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Defect-density control of platinum-based nanoframes with high-index facets for enhanced electrochemical properties 被引量:3
1
作者 shaohan yang Shuna Li +6 位作者 Lianghao Song Yipin Lv Zhongyao Duan Chunsheng Li Raphael Francesco Praeg Daowei Gao Guozhu Chen 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2881-2888,共8页
Structure-engineered platinum-based nanoframes(NFs)at the atomic level can effectively improve the catalytic performance for fuel cells and other heterogeneous catalytic fields.We report herein,a microwave-assisted we... Structure-engineered platinum-based nanoframes(NFs)at the atomic level can effectively improve the catalytic performance for fuel cells and other heterogeneous catalytic fields.We report herein,a microwave-assisted wet-chemical method for the preparation of platinum-copper-cobalt NFs with tunable defect density and architecture,which exhibit enhanced activity and durability towards the electro-oxidation reactions of methanol(MOR)and formic acid(FAOR).By altering the reduction/capping agents and thus the nucleation/growth kinetics,trimetallic platinum-copper-cobalt hexapod NFs with different density high-index facets are achieved.Especially,the rough hexapod nanoframes(rh-NFs)exhibit excellent specific activities towards MOR and FAOR,7.25 and 5.20 times higher than those of benchmark Pt/C,respectively,along with prolonged durability.The excellent activities of the rh-NFs are assigned to a synergistic effect,including high density of defects and high-index facets,suitable d-band center,and open-framework structure.This synergistic working mechanism opens up a new way for enhancing their electrocatalytic performances by increasing defect density and high-index facets in open-framework platinum-based NFs. 展开更多
关键词 nanoframes defect-density high-index facets ELECTROCATALYST
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部