Composite solid-state electrolytes have received significant attention due to their combined advantages as inorganic and polymer electrolytes.However,conventional ceramic fillers offer limited ion conductivity enhance...Composite solid-state electrolytes have received significant attention due to their combined advantages as inorganic and polymer electrolytes.However,conventional ceramic fillers offer limited ion conductivity enhancement for composite solid-state electrolytes due to the space-charge layer between the polymer matrix and ceramic phase.In this study,we develop a ferroelectric ceramic ion conductor(LiTaO_(3))as a func-tional filler to simultaneously alleviate the space-charge layer and provide an extra Li+transport pathway.The obtained composite solid-state electrolyte comprising LiTaO_(3)filler and poly(vinylidene difluoride)matrix(P-LTO15)achieves an ionic conductivity of 4.90×10^(−4)S cm−1 and a Li+transference number of 0.45.The polar-ized ferroelectric LiTaO_(3)creates a uniform electric field and promotes homogenous Li plating/stripping,providing the Li symmetrical batteries with an ultrastable cycle life for 4000 h at 0.1 mA cm^(−2)and a low polar-ization overpotential(~50 mV).Furthermore,the solid-state NCM811/P-LTO15/Li full batteries achieve an ultralong cycling performance(1400 cycles)at 1 C and a high discharge capacity of 102.1 mAh g^(−1)at 5 C.This work sheds light on the design of functional ceramic fillers for composite solid-state electrolytes to effec-tively enhance ion conductivity and battery performance.展开更多
基金supported by the National Natural Science Foundation of China(No.52325206,U2001220 and 52203298)Key-Area Research and Development Program of Guangdong Province(No.2020B090919001)+2 种基金Shenzhen.Shenzhen Outstanding Talents Training FundAll-Solid-State Lithium Battery Electrolyte Engineering Research Center(XMHT20200203006)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,YJ20220530143012027,JCYJ20220818101003007,JCYJ20220818101003008).
文摘Composite solid-state electrolytes have received significant attention due to their combined advantages as inorganic and polymer electrolytes.However,conventional ceramic fillers offer limited ion conductivity enhancement for composite solid-state electrolytes due to the space-charge layer between the polymer matrix and ceramic phase.In this study,we develop a ferroelectric ceramic ion conductor(LiTaO_(3))as a func-tional filler to simultaneously alleviate the space-charge layer and provide an extra Li+transport pathway.The obtained composite solid-state electrolyte comprising LiTaO_(3)filler and poly(vinylidene difluoride)matrix(P-LTO15)achieves an ionic conductivity of 4.90×10^(−4)S cm−1 and a Li+transference number of 0.45.The polar-ized ferroelectric LiTaO_(3)creates a uniform electric field and promotes homogenous Li plating/stripping,providing the Li symmetrical batteries with an ultrastable cycle life for 4000 h at 0.1 mA cm^(−2)and a low polar-ization overpotential(~50 mV).Furthermore,the solid-state NCM811/P-LTO15/Li full batteries achieve an ultralong cycling performance(1400 cycles)at 1 C and a high discharge capacity of 102.1 mAh g^(−1)at 5 C.This work sheds light on the design of functional ceramic fillers for composite solid-state electrolytes to effec-tively enhance ion conductivity and battery performance.