期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Wheeled Wall-Climbing Robot with Bio-Inspired Spine Mechanisms 被引量:18
1
作者 Yanwei Liu shaoming sun +1 位作者 Xuan Wu Tao Mei 《Journal of Bionic Engineering》 SCIE EI CSCD 2015年第1期17-28,共12页
This paper presents a wheeled wall-climbing robot with the ability to climb concrete, brick walls using circular arrays of miniature spines located around the wheel. The robot consists of two driving wheels and a flex... This paper presents a wheeled wall-climbing robot with the ability to climb concrete, brick walls using circular arrays of miniature spines located around the wheel. The robot consists of two driving wheels and a flexible tail, just like letter “T”, so it is called Tbot. The simple and effective structure of Tbot enables it to be steerable and to transition from horizontal to vertical surfaces rapidly and stably. Inspired by the structure and mechanics of the tarsal chain in the Serica orientalis Motschulsky, a compliant spine mechanism was developed. With the bio-inspired compliant spine mechanism, the climbing performance of Tbot was improved. It could climb on 100° (10° past vertical) brick walls at a speed of 10 cm·s^-1. A mechanical model is also presented to analyze the forces acting on spine during a climbing cycle as well as load share between multi-spines. The simu- lation and experiment results show that the mechanical model is suitable and useful in the optimum design of Tbot. 展开更多
关键词 biologically-inspired robots climbing robots compliant spine mechanisms mechanical model wheeled robots
原文传递
Design of All-Fused-Ring Electron Acceptors with High Thermal,Chemical,and Photochemical Stability for Organic Photovoltaics 被引量:4
2
作者 Xiaozhang Zhu Songjun Liu +3 位作者 Qihui Yue Wuyue Liu shaoming sun Shengjie Xu 《CCS Chemistry》 CAS 2021年第6期1070-1080,共11页
High-performance donor-acceptor electron acceptors containing 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile(INCN)-type terminals are labile toward photooxidation and basic conditions,and new molecular designs ... High-performance donor-acceptor electron acceptors containing 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile(INCN)-type terminals are labile toward photooxidation and basic conditions,and new molecular designs toward electron acceptors that can achieve both high power conversion efficiencies and high stability are urgently needed.By replacing the central benzene ring in the classical ladder-type n-type semiconductor,2,2′-(indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile,with the electron-rich 4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene,we report herein the design of 2,2′-(7,7,15,15-tetrahexyl-7,15-dihydro-sindaceno[1,2-b:5,6-b′]diindeno[1,2-d]thiophene-2,10(2H)-diylidene)dimalononitrile(ITYM),a new type of all-fused-ring electron acceptor(AFRA).A threestep reaction including a key Pd-catalyzed double C-H activation/intramolecular cyclization is established for the efficient synthesis of such type of electron acceptors.ITYM is confirmed by singlecrystal X-ray analysis,which shows a planar nonacyclic structure with strongπ-πstacking.Compared with the classical carbon-bridged INCN-type acceptors,ITYM exhibits extraordinary stability with very promising performance.The AFRA concept opens a new avenue toward high-efficiency and-stability organic photovoltaics(OPVs). 展开更多
关键词 organic photovoltaics nonfullerene acceptor all-fused-ring design C-H activation stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部