期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Resampling Factor Estimation via Dual-Stream Convolutional Neural Network 被引量:1
1
作者 Shangjun Luo Junwei Luo +4 位作者 Wei Lu Yanmei Fang Jinhua Zeng shaopei shi Yue Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第1期647-657,共11页
The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted... The estimation of image resampling factors is an important problem in image forensics.Among all the resampling factor estimation methods,spectrumbased methods are one of the most widely used methods and have attracted a lot of research interest.However,because of inherent ambiguity,spectrum-based methods fail to discriminate upscale and downscale operations without any prior information.In general,the application of resampling leaves detectable traces in both spatial domain and frequency domain of a resampled image.Firstly,the resampling process will introduce correlations between neighboring pixels.In this case,a set of periodic pixels that are correlated to their neighbors can be found in a resampled image.Secondly,the resampled image has distinct and strong peaks on spectrum while the spectrum of original image has no clear peaks.Hence,in this paper,we propose a dual-stream convolutional neural network for image resampling factors estimation.One of the two streams is gray stream whose purpose is to extract resampling traces features directly from the rescaled images.The other is frequency stream that discovers the differences of spectrum between rescaled and original images.The features from two streams are then fused to construct a feature representation including the resampling traces left in spatial and frequency domain,which is later fed into softmax layer for resampling factor estimation.Experimental results show that the proposed method is effective on resampling factor estimation and outperforms some CNN-based methods. 展开更多
关键词 Image forensics image resampling detection parameter estimation convolutional neural network
下载PDF
Forensic Human Image Identification Using Medical Indicators
2
作者 Jinhua Zeng Xiulian Qiu +1 位作者 shaopei shi Xinwei Bian 《Forensic Sciences Research》 CSCD 2022年第4期808-814,共7页
Diseases not only bring troubles to people’s body functions and mind but also influence the appearances and behaviours of human beings.Similarly,we can analyse the diseases from people’s appearances and behaviours a... Diseases not only bring troubles to people’s body functions and mind but also influence the appearances and behaviours of human beings.Similarly,we can analyse the diseases from people’s appearances and behaviours and use the personal medical history for human identification.In this article,medical indicators presented in abnormal changes of human appearances and behaviours caused by physiological or psychological diseases were introduced,and were applied in the field of forensic identification of human images,which we called medical forensic identification of human images(mFIHI).The proposed method analysed the people’s medical signs by studying the appearance and behaviour characteristics depicted in images or videos,and made a comparative examination between the medical indicators of the questioned human images and the corresponding signs or medical history of suspects.Through a conformity and difference analysis on medical indicators and their indicated diseases,it would provide an important information for human identification from images or videos.A case study was carried out to demonstrate and verify the feasibility of the proposed method of mFIHI,and our results showed that it would be important contents and angles for forensic expert manual examination in forensic human image identification. 展开更多
关键词 Forensic sciences medical indicators forensic identification of human images medical diseases
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部