Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dis...Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dissipate under the action of southeast monsoons and ocean surface currents.This causes serious harm to the ecological environment and economic activities of coastal cities.To investigate the impact of U.prolifera dissipation,this study extracted the spatiotemporal distribution of U.prolifera in the SYS from 2012 to 2020 based on the Google Earth Engine.The outbreak cycle of U.prolifera was determined by fitting analysis of outbreak time and coverage area through MATLAB.This study also looked at the effect of U.prolifera dissipation on water quality through field monitoring data.The results showed that the growth curve of the U.prolifera has a significant Gaussian distribution.The U.prolifera dissipates in Haiyang,China,in July and August every year and affects the offshore environment.Water quality parameters of seawater at different depths had significant differences after the U.prolifera dissipation.Changes in pH,chemical oxygen demand,nitrite nitrogen,nitrate nitrogen,ammonia nitrogen,chlorophyll a,total phosphorus,and suspended solids were more significant in surface seawater than in deeper water.Changes in the concentrations of dissolved oxygen and total nitrogen were more significant in the deep seawater(1.63 and 1.1 times higher than those in the surface seawater,respectively).The dissipation of U.prolifera releases a large amount of carbon and nitrogen into the seawater,which provides rich nutrients for phytoplankton and may cause secondary disasters such as red tide.These findings are useful for further understanding the rules of U.prolifera dissipation,as well as preventing and controlling green tide disasters.展开更多
基金The National Natural Science Foundation of China under contract No.42071385the Shandong Natural Science Foundation under contract No.ZR2019MD041+1 种基金the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University under contract No.MAETIC2021-12the Yantai Science and Technology Innovation Development Plan Project under contract No.2022MSGY062。
文摘Outbreaks of Ulva prolifera have continued in the South Yellow Sea of China(SYS)since 2007,becoming a serious marine ecological disaster.Large amounts of U.prolifera drift to the coast of the Shandong Peninsula to dissipate under the action of southeast monsoons and ocean surface currents.This causes serious harm to the ecological environment and economic activities of coastal cities.To investigate the impact of U.prolifera dissipation,this study extracted the spatiotemporal distribution of U.prolifera in the SYS from 2012 to 2020 based on the Google Earth Engine.The outbreak cycle of U.prolifera was determined by fitting analysis of outbreak time and coverage area through MATLAB.This study also looked at the effect of U.prolifera dissipation on water quality through field monitoring data.The results showed that the growth curve of the U.prolifera has a significant Gaussian distribution.The U.prolifera dissipates in Haiyang,China,in July and August every year and affects the offshore environment.Water quality parameters of seawater at different depths had significant differences after the U.prolifera dissipation.Changes in pH,chemical oxygen demand,nitrite nitrogen,nitrate nitrogen,ammonia nitrogen,chlorophyll a,total phosphorus,and suspended solids were more significant in surface seawater than in deeper water.Changes in the concentrations of dissolved oxygen and total nitrogen were more significant in the deep seawater(1.63 and 1.1 times higher than those in the surface seawater,respectively).The dissipation of U.prolifera releases a large amount of carbon and nitrogen into the seawater,which provides rich nutrients for phytoplankton and may cause secondary disasters such as red tide.These findings are useful for further understanding the rules of U.prolifera dissipation,as well as preventing and controlling green tide disasters.