期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
NEW NON-NATURALLY REDUCTIVE EINSTEIN METRICS ON Sp(n)
1
作者 Shaoxiang ZHANG Huibin CHEN shaoqiang deng 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期887-898,共12页
In this paper, we consider a class of left invariant Riemannian metrics on Sp(n),which is invariant under the adjoint action of the subgroup Sp(n-3) × Sp(1) × Sp(1) × Sp(1).Based on the related formulae... In this paper, we consider a class of left invariant Riemannian metrics on Sp(n),which is invariant under the adjoint action of the subgroup Sp(n-3) × Sp(1) × Sp(1) × Sp(1).Based on the related formulae in the literature, we show that the existence of Einstein metrics is equivalent to the existence of solutions of some homogeneous Einstein equations. Then we use a technique of the Gr?bner basis to get a sufficient condition for the existence, and show that this method will lead to new non-naturally reductive metrics. 展开更多
关键词 Einstein metric non-naturally reductive metric compact Lie group symplectic group
下载PDF
Classification of invariant Einstein metrics on certain compact homogeneous spaces 被引量:1
2
作者 Zaili Yan Huibin Chen shaoqiang deng 《Science China Mathematics》 SCIE CSCD 2020年第4期755-776,共22页
In this paper,we study invariant Einstein metrics on certain compact homogeneous spaces with three isotropy summands.We show that,if G/K is a compact isotropy irreducible space with G and K simple,then except for some... In this paper,we study invariant Einstein metrics on certain compact homogeneous spaces with three isotropy summands.We show that,if G/K is a compact isotropy irreducible space with G and K simple,then except for some very special cases,the coset space G×G/△(K)carries at least two invariant Einstein metrics.Furthermore,in the case that G1,G2 and K are simple Lie groups,with K■G1,K■G2,and G_1≠G2,such that G_1/K and G2/K are compact isotropy irreducible spaces,we give a complete classification of invariant Einstein metrics on the coset space G1×G2/△(K). 展开更多
关键词 COMPACT LIE group EINSTEIN metric ISOTROPY IRREDUCIBLE space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部