Fiber-optic sensors have been developed to monitor the structural vibration with advantages of high sensitivity,immunity to electromagnetic interference(EMI),flexibility,and capability to achieve multiplexed or distri...Fiber-optic sensors have been developed to monitor the structural vibration with advantages of high sensitivity,immunity to electromagnetic interference(EMI),flexibility,and capability to achieve multiplexed or distributed sensing.However,the current fiber-optic sensors require precisely polarized coherent lasers as the lighting sources,which are expensive in cost and suffer from the power supply issues while operating at outdoor environments.This work aims at solving these issues,through developing a fully self-powered,natural-light-enabled approach.To achieve that,a spring oscillator-based triboelectric nanogenerator(TENG),a polymer network liquid crystal(PNLC),and an optical fiber were integrated.The external vibration drove the PNLC to switch its transparency,allowing the varia-tion of the incident natural light in the optical fiber.Compared with the majority of conventional TENG-based active vibration sensors,the developed paradigm does not suffer from the EMI,without requirements of the signal preamplifica-tion which consumes additional energy.The vibration displacement monitoring was performed to validate the sensing effectiveness of the developed paradigm.展开更多
基金This work was funded by HKSAR the Research Grants Council Early Career Scheme(Grant no.24206919)HKSAR Innovation and Technology Fund(Grant no.ITS/085/18)TencentUniversityRelationsProgramme(contract no.T-576-INV-20200507-01).
文摘Fiber-optic sensors have been developed to monitor the structural vibration with advantages of high sensitivity,immunity to electromagnetic interference(EMI),flexibility,and capability to achieve multiplexed or distributed sensing.However,the current fiber-optic sensors require precisely polarized coherent lasers as the lighting sources,which are expensive in cost and suffer from the power supply issues while operating at outdoor environments.This work aims at solving these issues,through developing a fully self-powered,natural-light-enabled approach.To achieve that,a spring oscillator-based triboelectric nanogenerator(TENG),a polymer network liquid crystal(PNLC),and an optical fiber were integrated.The external vibration drove the PNLC to switch its transparency,allowing the varia-tion of the incident natural light in the optical fiber.Compared with the majority of conventional TENG-based active vibration sensors,the developed paradigm does not suffer from the EMI,without requirements of the signal preamplifica-tion which consumes additional energy.The vibration displacement monitoring was performed to validate the sensing effectiveness of the developed paradigm.