Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heteroju...Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.展开更多
基金the financial support by the National Natural Science Foundation of China as general projects(Grant Nos.51779068,52070066,52211530084,42277059,and 22006029)Tianjin Commission of Science and Technology as key technologies R&D projects(No.21YFSNSN00250)+1 种基金Doctoral Inno-vation Project of Hebei Province(CXZZBS2023031)the Royal Society/International Exchanges 2021 Cost Share/NSFC(Grant No.IEC\NSFC\211142).
文摘Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.