期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples 被引量:12
1
作者 Xiaodan Tang Hongmei Yu +6 位作者 Brian Bui Lingyun wang Christina Xing shaoyan wang Mingli Chen Zhizhi Hu Wei Chen 《Bioactive Materials》 SCIE 2021年第6期1541-1554,共14页
Iodine ion is one of the most indispensable anions in living organisms,particularly being an important substance for the synthesis of thyroid hormones.Curcumin is a yellow-orange polyphenol compound derived from the r... Iodine ion is one of the most indispensable anions in living organisms,particularly being an important substance for the synthesis of thyroid hormones.Curcumin is a yellow-orange polyphenol compound derived from the rhizome of Curcuma longa L.,which has been commonly used as a spice and natural coloring agent,food additives,cosmetics as well as Chinese medicine.However,excess curcumin may cause DNA inactivation,lead to a decrease in intracellular ATP levels,and trigger the tissue necrosis.Therefore,quantitative detection of iodine and curcumin is of great significance in the fields of food and life sciences.Herein,we develop nitrogen-doped fluorescent carbon dots(NCDs)as a multi-mechanism detection for iodide and curcumin in actual complex biological and food samples,which was prepared by a one-step solid-phase synthesis using tartaric acid and urea as precursors without adding any other reagents.An assembled NCDs-Hg^(2+) fluorescence-enhanced sensor for the quantitative detection of I^(-) was established based on a fluorescence“turn-off-on”mechanism in a linear range of 0.3-15μM with a detection limit of 69.4 nM and successfully quantified trace amounts of I^(-) in water samples and urine sample.Meanwhile,the as-synthesized NCDs also can be used as a fluorescent quenched sensor for curcumin detection based on the synergistic internal filtration effect(IFE)and static quenching,achieving a good linear range of 0.1-20μM with a satisfactory detection limit of 29.8 nM.These results indicate that carbon dots are potential sensing materials for iodine and curcumin detection for the good of our health. 展开更多
关键词 Nitrogen-doped carbon dots Iodine ion CURCUMIN Internal filtration effect Solid-phase thermal method Disease DETECTION
原文传递
Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis
2
作者 Haiming Yang Baigang An +3 位作者 shaoyan wang Lixiang Li Wenjie Jin Lihua Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第6期1063-1070,共8页
Destruction of 4-phenolsulfonic acid (4-PSA) in water was carded out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondi... Destruction of 4-phenolsulfonic acid (4-PSA) in water was carded out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4- PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH. 展开更多
关键词 4-phenolsulfonic acid DESTRUCTION contact glow discharge electrolysis first-order rate law Fenton reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部