期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Antioxidant-enriched autologous biogel promoted diabetic wound healing by remodeling inherent posttraumatic inflammatory patterning and restoring compromised microenvironment homeostasis 被引量:2
1
作者 Yixi Yang Le Wang +11 位作者 Yonglin Zhou Yijun He shaozhang lin Yuwei Zeng Yunhe Zhou Wei Li Zaopeng He Qi Zhao Lihao Chen Zijie Li Wenhao Wang Zhi-Yong Zhang 《Regenerative Biomaterials》 SCIE EI 2022年第1期202-218,共17页
Successful wound healing depends on the reconstruction of proper tissue homeostasis,particularly in the posttraumatic inflammatory tissue microenvironment.Diabetes jeopardizes tissues’immune homeostasis in cutaneous ... Successful wound healing depends on the reconstruction of proper tissue homeostasis,particularly in the posttraumatic inflammatory tissue microenvironment.Diabetes jeopardizes tissues’immune homeostasis in cutaneous wounds,causing persistent chronic inflammation and cytokine dysfunction.Previously,we developed an autologous regeneration factor(ARF)technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing.However,treatment efficacy was significantly compromised in diabetic conditions.Therefore,we proposed that a combination of melatonin and ARF,which is beneficial for proper immune homeostasis reconstruction,could be an effective treatment for diabetic wounds.Our research showed that the utilization of melatonin-mediated ARF biogel(AM gel)promoted diabetic wound regeneration at a more rapid healing rate.RNA-Seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation.Currently,AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning. 展开更多
关键词 autologous regeneration factors wound healing HOMEOSTASIS tissue microenvironment inflammation patterning
原文传递
Corrigendum to“Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone”[Bioact.Mater.10C(April 2022)32-47]
2
作者 Wenhao Wang Jie Shen +11 位作者 Yuan Meng Miaoman Ye shaozhang lin Qi Zhao Le Wang Kenneth M.C.Cheung Shuilin Wu Yufeng Zheng Xuanyong Liu Paul K.Chu Kelvin W.K.Yeung Zhi-Yong Zhang 《Bioactive Materials》 SCIE CSCD 2023年第2期165-165,共1页
The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proof reading.Below is the corrected funding statement in Acknowledgment SECTION This work was supported by t... The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proof reading.Below is the corrected funding statement in Acknowledgment SECTION This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.81902189,81772354,82002303,31570980),Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR0201002),National Key Research and Development Plan(2018YFC1105103). 展开更多
关键词 NSFC statement enriched
原文传递
Corrigendum to‘Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation’[Bioactive Materials,Volume 9(March 2022)Page 491-507]
3
作者 Yijun He Wenhao Wang +13 位作者 shaozhang lin Yixi Yang Lizhi Song Yihan Jing Lihao Chen Zaopeng He Wei Li Ao Xiong Kelvin W.K.Yeung Qi Zhao Yuan Jiang Zijie Li Guoxian Pei Zhi-Yong Zhang 《Bioactive Materials》 SCIE CSCD 2023年第2期164-164,共1页
The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proofreading.Below is the corrected funding statement in ACKNOWLEDGMENT SECTION:This work was supported by th... The authors regret a mistake of funding numbers in the Acknowledgment Section failed to be corrected during proofreading.Below is the corrected funding statement in ACKNOWLEDGMENT SECTION:This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.82072415,81772354,81902189),Clinical Innovation Research Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory(2018GZR0201002),Science Technology Project of Guangzhou City(2019ZD15). 展开更多
关键词 NSFC instru STATEMENT
原文传递
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation 被引量:2
4
作者 Yijun He Wenhao Wang +13 位作者 shaozhang lin Yixi Yang Lizhi Song Yihan Jing Lihao Chen Zaopeng He Wei Li Ao Xiong Kelvin W.K.Yeung Qi Zhao Yuan Jiang Zijie Li Guoxian Pei Zhi-Yong Zhang 《Bioactive Materials》 SCIE 2022年第3期491-507,共17页
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone,most likely resulted from t... The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone,most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells.Human umbilical vein endothelial cell-derived decellularized extracellular matrix(HdECM),which contains a collection of angiocrine biomolecules,has recently been demonstrated to mediate endothelial cells(ECs)-osteoprogenitors(OPs)crosstalk.We employed the HdECM to create a PCL(polycaprolactone)/fibrin/HdECM(PFE)hybrid scaffold.We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk,resulting in vascularized bone regeneration.Following implantation in a rat femoral bone defect,the PFE scaffold demonstrated early vascular infiltration and enhanced bone regeneration by microangiography(μ-AG)and micro-computational tomography(μ-CT).Based on the immunofluorescence studies,PFE mediated the endogenous angiogenesis and osteogenesis with a substantial number of type H vessels and osteoprogenitors.In addition,superior osseointegration was observed by a direct host bone-PCL interface,which was likely attributed to the formation of type H vessels.The bio-instructive microenvironment created by our innovative PFE scaffold made possible superior osseointegration and type H vessel-related bone regeneration.It could become an alternative solution of improving the osseointegration of bone substitutes with the help of induced type H vessels,which could compensate for the inherent biological inertness of synthetic polymers. 展开更多
关键词 Cell-derived decellularized extracellular matrix MICROENVIRONMENT Vascularized bone regeneration Type H vessels OSSEOINTEGRATION
原文传递
Magnesium cationic cue enriched interfacial tissue microenvironment nurtures the osseointegration of gamma-irradiated allograft bone
5
作者 Wenhao Wang Jie Shen +11 位作者 Yuan Meng Miaoman Ye shaozhang lin Qi Zhao Le Wang Kenneth M.C.Cheung Shuilin Wu Yufeng Zheng Xuanyong Liu Paul K.Chu Kelvin W.K.Yeung Zhi-Yong Zhang 《Bioactive Materials》 SCIE 2022年第4期32-47,共16页
Regardless of the advancement of synthetic bone substitutes,allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases.Nevertheless,the stringent devitalization proc... Regardless of the advancement of synthetic bone substitutes,allograft-derived bone substitutes still dominate in the orthopaedic circle in the treatments of bone diseases.Nevertheless,the stringent devitalization process jeopardizes their osseointegration with host bone and therefore prone to long-term failure.Hence,improving osseointegration and transplantation efficiency remains important.The alteration of bone tissue microenvironment(TME)to facilitate osseointegration has been generally recognized.However,the concept of exerting metal ionic cue in bone TME without compromising the mechanical properties of bone allograft is challenging.To address this concern,an interfacial tissue microenvironment with magnesium cationc cue was tailored onto the gamma-irradiated allograft bone using a customized magnesium-plasma surface treatment.The formation of the Mg cationic cue enriched interfacial tissue microenvironment on allograft bone was verified by the scanning ion-selective electrode technique.The cellular activities of human TERT-immortalized mesenchymal stem cells on the Mg-enriched grafts were notably upregulated.In the animal test,superior osseointegration between Mg-enriched graft and host bone was found,whereas poor integration was observed in the gamma-irradiated controls at 28 days post-operation.Furthermore,the bony in-growth appeared on magnesium-enriched allograft bone was significant higher.The mechanism possibly correlates to the up-regulation of integrin receptors in mesenchymal stem cells under modified bone TME that directly orchestrate the initial cell attachment and osteogenic differentiation of mesenchymal stem cells.Lastly,our findings demonstrate the significance of magnesium cation modified bone allograft that can potentially translate to various orthopaedic procedures requiring bone augmentation. 展开更多
关键词 OSSEOINTEGRATION Allograft bone Bone tissue microenvironment Bone-implant interface MAGNESIUM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部