期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Automatic Team Assignment and Jersey Number Recognition in Football Videos
1
作者 Ragd Alhejaily Rahaf Alhejaily +2 位作者 Mai Almdahrsh shareefah alessa Saleh Albelwi 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2669-2684,共16页
Football is one of the most-watched sports,but analyzing players’per-formance is currently difficult and labor intensive.Performance analysis is done manually,which means that someone must watch video recordings and ... Football is one of the most-watched sports,but analyzing players’per-formance is currently difficult and labor intensive.Performance analysis is done manually,which means that someone must watch video recordings and then log each player’s performance.This includes the number of passes and shots taken by each player,the location of the action,and whether or not the play had a successful outcome.Due to the time-consuming nature of manual analyses,interest in automatic analysis tools is high despite the many interdependent phases involved,such as pitch segmentation,player and ball detection,assigning players to their teams,identifying individual players,activity recognition,etc.This paper proposes a system for developing an automatic video analysis tool for sports.The proposed system is the first to integrate multiple phases,such as segmenting the field,detecting the players and the ball,assigning players to their teams,and iden-tifying players’jersey numbers.In team assignment,this research employed unsu-pervised learning based on convolutional autoencoders(CAEs)to learn discriminative latent representations and minimize the latent embedding distance between the players on the same team while simultaneously maximizing the dis-tance between those on opposing teams.This paper also created a highly accurate approach for the real-time detection of the ball.Furthermore,it also addressed the lack of jersey number datasets by creating a new dataset with more than 6,500 images for numbers ranging from 0 to 99.Since achieving a high perfor-mance in deep learning requires a large training set,and the collected dataset was not enough,this research utilized transfer learning(TL)to first pretrain the jersey number detection model on another large dataset and then fine-tune it on the target dataset to increase the accuracy.To test the proposed system,this paper presents a comprehensive evaluation of its individual stages as well as of the sys-tem as a whole. 展开更多
关键词 Football video analysis player detection ball detection team assignment jersey number recognition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部