期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High power and stable P-doped yolk-shell structured Si@C anode simultaneously enhancing conductivity and Li^(+)diffusion kinetics 被引量:8
1
作者 Ming Chen Qinnan Zhou +11 位作者 Jiantao Zai Asma Iqbal TsegayeTadesse Tsega Boxu Dong Xuejiao Liu Yuchi Zhang Changyu Yan Liang Zhao Ali Nazakat sharelpeisan e CheeTongJohn Low Xuefeng Qian 《Nano Research》 SCIE EI CAS CSCD 2021年第4期1004-1011,共8页
Silicon is a low price and high capacity ancxje material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve stability.However,the limited rate performance of Si anod... Silicon is a low price and high capacity ancxje material for lithium-ion batteries.The yolk-shell structure can effectively accommodate Si expansion to improve stability.However,the limited rate performance of Si anodes can't meet people's growing demand for high power density.Herein,the phosphorus-doped yolk-shell Si@C materials(P-doped Si@C)were prepared through carbon coating on P-doped Si/SiO_(x)matrix to obtain high power and stable devices.Therefore,the as-prepared P-doped Si@C electrodes delivered a rapid increase in Coulombic efficiency from 74.4%to 99.6%after only 6 cycles,high capacity retention of-95%over 800 cycles at 4 A·g^(-1),and great rate capability(510 mAh·g^(-1)at 35 A·g^(-1)).As a result,P-doped Si@C anodes paired with commercial activated carbon and LiFePO_(4)cathode to assemble lithium-ion capacitor(high power density of〜61,080 W·kg^(-1)at 20 A·g^(-1))and lithium-ion full cell(good rate performance with 68.3 mAh·g^(-1)at 5 C),respectively.This work can provide an effective way tofurther improve power density and stability for energy storage devices. 展开更多
关键词 P-doped yolk-shell structured Si@C anode excellent rate performance long life lithium-ion battery high power full cell
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部