期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Development of Machine Learning Methods for Accurate Prediction of Plant Disease Resistance
1
作者 Qi Liu Shi-min Zuo +10 位作者 shasha peng Hao Zhang Ye peng Wei Li Yehui Xiong Runmao Lin Zhiming Feng Huihui Li Jun Yang Guo-Liang Wang Houxiang Kang 《Engineering》 SCIE EI CAS CSCD 2024年第9期100-110,共11页
The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease... The traditional method of screening plants for disease resistance phenotype is both time-consuming and costly.Genomic selection offers a potential solution to improve efficiency,but accurately predicting plant disease resistance remains a challenge.In this study,we evaluated eight different machine learning(ML)methods,including random forest classification(RFC),support vector classifier(SVC),light gradient boosting machine(lightGBM),random forest classification plus kinship(RFC_K),support vector classification plus kinship(SVC_K),light gradient boosting machine plus kinship(lightGBM_K),deep neural network genomic prediction(DNNGP),and densely connected convolutional networks(DenseNet),for predicting plant disease resistance.Our results demonstrate that the three plus kinship(K)methods developed in this study achieved high prediction accuracy.Specifically,these methods achieved accuracies of up to 95%for rice blast(RB),85%for rice black-streaked dwarf virus(RBSDV),and 85%for rice sheath blight(RSB)when trained and applied to the rice diversity panel I(RDPI).Furthermore,the plus K models performed well in predicting wheat blast(WB)and wheat stripe rust(WSR)diseases,with mean accuracies of up to 90%and 93%,respectively.To assess the generalizability of our models,we applied the trained plus K methods to predict RB disease resistance in an independent population,rice diversity panel II(RDPII).Concurrently,we evaluated the RB resistance of RDPII cultivars using spray inoculation.Comparing the predictions with the spray inoculation results,we found that the accuracy of the plus K methods reached 91%.These findings highlight the effectiveness of the plus K methods(RFC_K,SVC_K,and lightGBM_K)in accurately predicting plant disease resistance for RB,RBSDV,RSB,WB,and WSR.The methods developed in this study not only provide valuable strategies for predicting disease resistance,but also pave the way for using machine learning to streamline genome-based crop breeding. 展开更多
关键词 Predicting plant disease resistance Genomic selection Machine learning Genome-wide association study
下载PDF
黄土高原黄土地层古人类遗迹年代研究新进展 被引量:5
2
作者 朱照宇 黄慰文 +11 位作者 吴翼 邱世藩 饶志国 杨石霞 侯亚梅 谢久兵 韩江伟 付淑清 欧阳婷萍 周厚云 彭莎莎 Robin Dennell 《科学通报》 EI CAS CSCD 北大核心 2019年第25期2641-2653,共13页
自1920年以来,在中国黄土高原及邻近地区的黄土及河湖相地层分布区发现了大量的古人类活动遗迹地点,其中包括著名的泥河湾、水洞沟、萨拉乌苏、丁村、大荔、匼河-西侯度、庄浪、庆阳、三门峡、东秦岭地区以及蓝田地区等.在陕西蓝田的最... 自1920年以来,在中国黄土高原及邻近地区的黄土及河湖相地层分布区发现了大量的古人类活动遗迹地点,其中包括著名的泥河湾、水洞沟、萨拉乌苏、丁村、大荔、匼河-西侯度、庄浪、庆阳、三门峡、东秦岭地区以及蓝田地区等.在陕西蓝田的最新研究进展是运用第四纪地质学与古人类学和旧石器考古学交叉学科的综合研究方法,以黄土-古土壤序列和高分辨率磁性地层年代框架为依据,发现了公王岭遗址黄土地层的强烈侵蚀和多组地层缺失,确定了直立人头盖骨与伴生的古动物化石所埋藏的地层不是前人原确定的粉砂质黄土L15中部(年代为1.15 Ma),而是位于一个大侵蚀面之下的S22~S23古土壤混合层(年代为1.63 Ma).同时,在蓝田上陈一带发现了新的出露良好的连续黄土-古土壤剖面(L5~L28),并在早更新世S15~L28层段的17层黄土或古土壤层位中发现了原地埋藏的数量不等的旧石器,其年代为1.26~2.12 Ma.研究结果使蓝田地区成为迄今所知非洲以外最古老的人类活动地区之一,这不仅在人类起源和演化方面提出了新的科学思考,并拓展了'黄土石器工业'和'黄土地质考古带'的研究方向,提出了中国黄土高原高分辨率黄土-古土壤序列与多时期古人类活动序列关联研究的新设想. 展开更多
关键词 黄土-古土壤序列 古人类遗迹 年代学 黄土高原
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部