期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Removal of formaldehyde over Mn_xCe_(1- x)O_2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation 被引量:9
1
作者 Jia Wei Li Kuan Lun Pan +2 位作者 Sheng Jen Yu shaw yi yan Moo Been Chang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第12期2546-2553,共8页
MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite str... MnxCe1- xO2(x: 0.3–0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde(HCHO). At x = 0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of Ce O2 to form a solid solution. The catalytic activity was best at x = 0.5, at which the temperature of 100% removal rate is the lowest(270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5 wt.% Cu Oxinto Mn0.5Ce0.5O2. With ozone catalytic oxidation, HCHO(61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV(gas hourly space velocity) of 10,000 hr-1at 25°C. The effect of the molar ratio of O3 to HCHO was also investigated. As O3/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O3/HCHO ratio of 8, the mineralization efficiency of HCHO to CO2 was 86.1%. At 25°C, the p-type oxide semiconductor(Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as Ti O2, which had a low ozone decomposition efficiency(9.81%). At a GHSV of 10,000 hr-1, [O3]/[HCHO] = 3 and temperature of 25°C, a high HCHO removal efficiency(≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal. 展开更多
关键词 FORMALDEHYDE Volatile organic compounds Indoor air pollutant Thermal catalytic oxidation Ozone catalytic oxidation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部