This work aimed to find a proper control strategy to transfer loads using overhead cranes. The proposed control strategy, which is Fuzzy PD-based, should take into account two main factors. First, the time needed to m...This work aimed to find a proper control strategy to transfer loads using overhead cranes. The proposed control strategy, which is Fuzzy PD-based, should take into account two main factors. First, the time needed to move the payload from the initial pick up point to the destination point that must be minimized. Second, the oscillation of the payload must be reduced to prevent hazards for people and equipment in the work place. The current work, presents a comparative analysis of fuzzy PD based control basing on classical PD approach. A simplified model has been derived. The proposed control techniques have been designed and validated with MatLab. Numerical comparative results have been obtained and discussed.展开更多
In This paper, a modular approach for investigation of the dynamic behavior of three phase induction motor is developed and described in details. This model has been built up, systematically, by means of basic functio...In This paper, a modular approach for investigation of the dynamic behavior of three phase induction motor is developed and described in details. This model has been built up, systematically, by means of basic function blocks found with MATLAB/SIMULINK. This model is described in similar but modular approach as in electrical machines theory. The motor model includes multi-level blocks solving equations for each motor part or component. This approach enables the researcher to calculate or investigate any motor variables;voltage, current, flux, speed and torque. This model could also be used for a wide range of horse power needed in scientific research and numerical applications. A q-d axis based model is proposed to analyze the transient performance of three-phase squirrel cage induction motor using stationary reference frame. Constructional details of various sub-models for the induction motor are given and their implementation in SIMULINK is outlined. Direct-online starting under different load conditions of a 3 hp induction motor (as case study) is also studied. The motor stator voltage, the stator and rotor currents, the developed torque and rotor speed are, numerically, calculated and plotted for different operating conditions.展开更多
文摘This work aimed to find a proper control strategy to transfer loads using overhead cranes. The proposed control strategy, which is Fuzzy PD-based, should take into account two main factors. First, the time needed to move the payload from the initial pick up point to the destination point that must be minimized. Second, the oscillation of the payload must be reduced to prevent hazards for people and equipment in the work place. The current work, presents a comparative analysis of fuzzy PD based control basing on classical PD approach. A simplified model has been derived. The proposed control techniques have been designed and validated with MatLab. Numerical comparative results have been obtained and discussed.
文摘In This paper, a modular approach for investigation of the dynamic behavior of three phase induction motor is developed and described in details. This model has been built up, systematically, by means of basic function blocks found with MATLAB/SIMULINK. This model is described in similar but modular approach as in electrical machines theory. The motor model includes multi-level blocks solving equations for each motor part or component. This approach enables the researcher to calculate or investigate any motor variables;voltage, current, flux, speed and torque. This model could also be used for a wide range of horse power needed in scientific research and numerical applications. A q-d axis based model is proposed to analyze the transient performance of three-phase squirrel cage induction motor using stationary reference frame. Constructional details of various sub-models for the induction motor are given and their implementation in SIMULINK is outlined. Direct-online starting under different load conditions of a 3 hp induction motor (as case study) is also studied. The motor stator voltage, the stator and rotor currents, the developed torque and rotor speed are, numerically, calculated and plotted for different operating conditions.