Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and...Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and desirable morphological features.They hold immense potential for utilization in diverse fields,including adsorption,separation,catalysis,bioengineering,and medicine.Despite possessing interior porous structures,excellent morphological characteristics,and superior biocompatibility,primitive MBGs face challenges related to weak encapsulation efficiency,drug loading,and mechanical strength when applied in biomedical fields.It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies,miscellaneous metal species,and their conjugates into the material surfaces or intrinsic mesoporous networks.The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications,such as stimuli-responsive drug delivery,with exceptional in-vivo performances.In view of the above,we outline the fabrication process of calcium-silicon-phosphorus based MBGs,followed by discussions on their significant progress in various engineered strategies involving surface functionalization,nanostructures,and network modification.Furthermore,we emphasize the recent advancements in the textural and physicochemical properties of MBGs,along with their theranostic potentials in multiple cancerous and non-cancerous diseases.Lastly,we recapitulate compelling viewpoints,with specific considerations given from bench to bedside.展开更多
基金funded by National Natural Science Foundation of China,grant 81701020National Natural Science Foundation of China,grant 82071081+1 种基金Shanghai Municipal Health and Family Planning Commission,grant 201740035China Postdoctoral Science Foundation,grant 2023M742318。
文摘Mesoporous bioactive glasses(MBGs),which belong to the category of modern porous nanomaterials,have garnered significant attention due to their impressive biological activities,appealing physicochemical properties,and desirable morphological features.They hold immense potential for utilization in diverse fields,including adsorption,separation,catalysis,bioengineering,and medicine.Despite possessing interior porous structures,excellent morphological characteristics,and superior biocompatibility,primitive MBGs face challenges related to weak encapsulation efficiency,drug loading,and mechanical strength when applied in biomedical fields.It is important to note that the advantageous attributes of MBGs can be effectively preserved by incorporating supramolecular assemblies,miscellaneous metal species,and their conjugates into the material surfaces or intrinsic mesoporous networks.The innovative advancements in these modified colloidal inorganic nanocarriers inspire researchers to explore novel applications,such as stimuli-responsive drug delivery,with exceptional in-vivo performances.In view of the above,we outline the fabrication process of calcium-silicon-phosphorus based MBGs,followed by discussions on their significant progress in various engineered strategies involving surface functionalization,nanostructures,and network modification.Furthermore,we emphasize the recent advancements in the textural and physicochemical properties of MBGs,along with their theranostic potentials in multiple cancerous and non-cancerous diseases.Lastly,we recapitulate compelling viewpoints,with specific considerations given from bench to bedside.