期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
1
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid sheeraz akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ECG false positive rate deep learning CLASSIFICATION
下载PDF
Facial Image-Based Autism Detection:A Comparative Study of Deep Neural Network Classifiers
2
作者 Tayyaba Farhat sheeraz akram +3 位作者 Hatoon SAlSagri Zulfiqar Ali Awais Ahmad Arfan Jaffar 《Computers, Materials & Continua》 SCIE EI 2024年第1期105-126,共22页
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula... Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis. 展开更多
关键词 AUTISM Autism Spectrum Disorder(ASD) disease segmentation features optimization deep learning models facial images classification
下载PDF
Empowering Diagnosis: Cutting-Edge Segmentation and Classification in Lung Cancer Analysis
3
作者 Iftikhar Naseer Tehreem Masood +4 位作者 sheeraz akram Zulfiqar Ali Awais Ahmad Shafiq Ur Rehman Arfan Jaffar 《Computers, Materials & Continua》 SCIE EI 2024年第6期4963-4977,共15页
Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been dev... Lung cancer is a leading cause of global mortality rates.Early detection of pulmonary tumors can significantly enhance the survival rate of patients.Recently,various Computer-Aided Diagnostic(CAD)methods have been developed to enhance the detection of pulmonary nodules with high accuracy.Nevertheless,the existing method-ologies cannot obtain a high level of specificity and sensitivity.The present study introduces a novel model for Lung Cancer Segmentation and Classification(LCSC),which incorporates two improved architectures,namely the improved U-Net architecture and the improved AlexNet architecture.The LCSC model comprises two distinct stages.The first stage involves the utilization of an improved U-Net architecture to segment candidate nodules extracted from the lung lobes.Subsequently,an improved AlexNet architecture is employed to classify lung cancer.During the first stage,the proposed model demonstrates a dice accuracy of 0.855,a precision of 0.933,and a recall of 0.789 for the segmentation of candidate nodules.The suggested improved AlexNet architecture attains 97.06%accuracy,a true positive rate of 96.36%,a true negative rate of 97.77%,a positive predictive value of 97.74%,and a negative predictive value of 96.41%for classifying pulmonary cancer as either benign or malignant.The proposed LCSC model is tested and evaluated employing the publically available dataset furnished by the Lung Image Database Consortium and Image Database Resource Initiative(LIDC-IDRI).This proposed technique exhibits remarkable performance compared to the existing methods by using various evaluation parameters. 展开更多
关键词 Lung cancer SEGMENTATION AlexNet U-Net classification
下载PDF
Enhancing ChatGPT’s Querying Capability with Voice-Based Interaction and CNN-Based Impair Vision Detection Model
4
作者 Awais Ahmad Sohail Jabbar +3 位作者 sheeraz akram Anand Paul Umar Raza Nuha Mohammed Alshuqayran 《Computers, Materials & Continua》 SCIE EI 2024年第3期3129-3150,共22页
This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-... This paper presents an innovative approach to enhance the querying capability of ChatGPT,a conversational artificial intelligence model,by incorporating voice-based interaction and a convolutional neural network(CNN)-based impaired vision detection model.The proposed system aims to improve user experience and accessibility by allowing users to interact with ChatGPT using voice commands.Additionally,a CNN-based model is employed to detect impairments in user vision,enabling the system to adapt its responses and provide appropriate assistance.This research tackles head-on the challenges of user experience and inclusivity in artificial intelligence(AI).It underscores our commitment to overcoming these obstacles,making ChatGPT more accessible and valuable for a broader audience.The integration of voice-based interaction and impaired vision detection represents a novel approach to conversational AI.Notably,this innovation transcends novelty;it carries the potential to profoundly impact the lives of users,particularly those with visual impairments.The modular approach to system design ensures adaptability and scalability,critical for the practical implementation of these advancements.Crucially,the solution places the user at its core.Customizing responses for those with visual impairments demonstrates AI’s potential to not only understand but also accommodate individual needs and preferences. 展开更多
关键词 Accessibility in conversational AI CNN-based impair vision detection ChatGPT voice-based interaction recommender system
下载PDF
Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions
5
作者 Umar Rashid Arfan Jaffar +2 位作者 Muhammad Rashid Mohammed S.Alshuhri sheeraz akram 《Computers, Materials & Continua》 SCIE EI 2024年第3期3377-3390,共14页
Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diamet... Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm. 展开更多
关键词 Pulmonary nodules SEGMENTATION HISTOGRAM THRESHOLDING
下载PDF
Lung Cancer Detection Using Modified AlexNet Architecture and Support Vector Machine 被引量:1
6
作者 Iftikhar Naseer Tehreem Masood +3 位作者 sheeraz akram Arfan Jaffar Muhammad Rashid Muhammad Amjad Iqbal 《Computers, Materials & Continua》 SCIE EI 2023年第1期2039-2054,共16页
Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a sig... Lung cancer is the most dangerous and death-causing disease indicated by the presence of pulmonary nodules in the lung.It is mostly caused by the instinctive growth of cells in the lung.Lung nodule detection has a significant role in detecting and screening lung cancer in Computed tomography(CT)scan images.Early detection plays an important role in the survival rate and treatment of lung cancer patients.Moreover,pulmonary nodule classification techniques based on the convolutional neural network can be used for the accurate and efficient detection of lung cancer.This work proposed an automatic nodule detection method in CT images based on modified AlexNet architecture and Support vector machine(SVM)algorithm namely LungNet-SVM.The proposed model consists of seven convolutional layers,three pooling layers,and two fully connected layers used to extract features.Support vector machine classifier is applied for the binary classification of nodules into benign andmalignant.The experimental analysis is performed by using the publicly available benchmark dataset Lung nodule analysis 2016(LUNA16).The proposed model has achieved 97.64%of accuracy,96.37%of sensitivity,and 99.08%of specificity.A comparative analysis has been carried out between the proposed LungNet-SVM model and existing stateof-the-art approaches for the classification of lung cancer.The experimental results indicate that the proposed LungNet-SVM model achieved remarkable performance on a LUNA16 dataset in terms of accuracy. 展开更多
关键词 Lung cancer alexnet luna16 computed tomography support vector machine
下载PDF
Fuzzy Based Hybrid Focus Value Estimation for Multi Focus Image Fusion
7
作者 Muhammad Ahmad M.Arfan Jaffar +2 位作者 Fawad Nasim Tehreem Masood sheeraz akram 《Computers, Materials & Continua》 SCIE EI 2022年第4期735-752,共18页
Due to limited depth-of-field of digital single-lens reflex cameras,the scene content within a limited distance from the imaging plane remains in focus while other objects closer to or further away from the point of f... Due to limited depth-of-field of digital single-lens reflex cameras,the scene content within a limited distance from the imaging plane remains in focus while other objects closer to or further away from the point of focus appear as blurred(out-of-focus)in the image.Multi-Focus Image Fusion can be used to reconstruct a fully focused image from two or more partially focused images of the same scene.In this paper,a new Fuzzy Based Hybrid Focus Measure(FBHFM)for multi-focus image fusion has been proposed.Optimal block size is very critical step for multi-focus image fusion.Particle Swarm Optimization(PSO)algorithm has been used to find optimal size of the block of the images for extraction of focus measure features.After finding optimal blocks,three focus measures Sum of Modified Laplacian,Gray Level Variance and Contrast Visibility has been extracted and combined these focus measures by using intelligent fuzzy technique.Fuzzy based hybrid intelligent focus values were estimated using contrast visibility measure to generate focused image.Different sets of multi-focus images have been used in detailed experimentation and compared the results with state-of-the-art existing techniques such as Genetic Algorithm(GA),Principal Component Analysis(PCA),Laplacian Pyramid discrete wavelet transform(DWT),and aDWT for image fusion.It has been found that proposed method performs well as compare to existing methods. 展开更多
关键词 Fuzzy logic multi-focus image fusion DEFOCUS FOCUS contrast visibility focus measure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部