期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of agitation speed on the morphology of Aspergillus niger HFD5A-1 hyphae and its pectinase production in submerged fermentation 被引量:3
1
作者 Darah Ibrahim Haritharan Weloosamy sheh-hong lim 《World Journal of Biological Chemistry》 CAS 2015年第3期265-271,共7页
AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger(A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rott... AIM: To investigate the impact of agitation speed on pectinase production and morphological changing of Aspergillus niger(A. niger) HFD5A-1 in submerged fermentation. METHODS: A. niger HFM5A-1 was isolated from a rotted pomelo. The inoculum preparation was performed by adding 5.0 m L of sterile distilled water containing 0.1% Tween 80 to a sporulated culture. Cultivation was carried out with inoculated 1 × 107 spores/m L suspension and incubated at 30 ℃ with different agitation speed for 6 d. The samples were withdrawn after 6 d cultivation time and were assayed for pectinase activity and fungal growth determination. The culture broth was filtered through filter paper(Whatman No. 1, London) to separate the fungal mycelium. The cell-free culture filtrate containing the crude enzyme was then assayed for pectinase activity. The biomass was dried at 80 ℃ until constant weight. The fungal cell dry weight was then expressed as g/L. The 6 d old fungal mycelia were harvested from various agitation speed, 0, 50, 100, 150, 200 and 250 rpm. The morphological changing of samples was then viewed under the light microscope and scanning electron microscope.RESULTS: In the present study, agitation speed was found to influence pectinase production in a batch cultivation system. However, higher agitation speeds than the optimal speed(150 rpm) reduced pectinase production which due to shear forces and also collision among the suspended fungal cells in the cultivation medium. Enzyme activity increased with the increasing of agitation speed up to 150 rpm, where it achieved its maximal pectinase activity of 1.559 U/m L. There were significant different(Duncan, P < 0.05) of the pectinase production with the agitation speed at static, 50, 100, 200 and 250 rpm. At the static condition, a well growth mycelial mat was observed on the surface of the cultivation medium and sporulation occurred all over the fungal mycelial mat. However with the increased in agitation speed, the mycelial mat turned slowly to become a single circular pellet. Thus, it was found that agitation speed affected the morphological characteristics of the fungal hyphae/mycelia of A. niger HFD5A-1 by altering their external as well as internal cell structures.CONCLUSION: Exposure to higher shear stress with an increasing agitation speed could result in lower biomass yields as well as pectinase production by A. niger HFD5A-1. 展开更多
关键词 ASPERGILLUS NIGER AGITATION Submerged culture PECTINASE Microbial growth Dissolved oxygen
下载PDF
In vitro antimicrobial activities of methanolic extract from marine alga Enteromorpha intestinalis
2
作者 Ibrahim Darah sheh-hong lim 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2015年第9期753-756,共4页
Objective:To extract the bioactive compound from Enteromorpha intestinalis(E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimi... Objective:To extract the bioactive compound from Enteromorpha intestinalis(E. intestinalis) and determine its in vitro antimicrobial activity. Methods: E. intestinalis was extracted by methanol and subjected to antimicrobial screening. The antimicrobial activity was studied by using disc diffusion and broth dilution method. The effect of the extract on the growth profile of the bacterial was also examined via time-kill assay. Microscopy observations using SEM was done to determine the major alterations in the microstructure of methicillin-resistant Staphylococcus aureus(MRSA). Results: The results showed methanolic extract of E. intestinalis exhibited a favourable antimicrobial activity against tested bacteria with produced inhibition zone ranging from 8.0-19.0 mm. However, all the tested fungi and yeast were resistant to the extract treatment. Time kill assay suggested that methanolic extract of E. intestinalis had completely inhibited MRSA growth and also exhibited prolonged antibacterial activity. The main abnormalities noted from the microscopic observations were the structural deterioration in the normal morphology and complete collapsed of the bacteria cells after 36 h of treatment. Conclusions: The significant antibacterial activity shown by crude extract suggested its potential against MRSA infection. The extract may have potential to develop as antibacterial agent in pharmaceutical use. 展开更多
关键词 Antibacterial activity ENTEROMORPHA INTESTINALIS Marine ALGAE METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部