For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class (1 < r < n). By changing the generalized Beltrami system into a ...For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class (1 < r < n). By changing the generalized Beltrami system into a class of a divergent elliptic system with nonhomogeneous items, we obtain that each of its very weak solutions is essentially a classical weak solution of a usual Sobolev class. Furthermore, we also establish a higher regularity of its weak solution if the regularity hypotheses of two characteristic matrices are improved.展开更多
In this paper, we prove a local HSlder estimate of (K1, K2)-quasiconformal mappings be- tween n-dimensional hypersurfaces of Rn+l under an assumption of bounded mean curvature of the original hypersurface M. With s...In this paper, we prove a local HSlder estimate of (K1, K2)-quasiconformal mappings be- tween n-dimensional hypersurfaces of Rn+l under an assumption of bounded mean curvature of the original hypersurface M. With some new ingredients of the isoperimetric inequality and the co-area formula on manifolds, we extend Simon's work of quasiconformal mappings on surfaces of R3 to the setting of n-dimensional hypersurfaces of Rn+1.展开更多
In this paper we establish an interior regularity of weak solution for quasi-linear degenerate elliptic equations under the subcritical growth if its coefficient matrix A(x, u) satisfies a VMO condition in the varia...In this paper we establish an interior regularity of weak solution for quasi-linear degenerate elliptic equations under the subcritical growth if its coefficient matrix A(x, u) satisfies a VMO condition in the variable x uniformly with respect to all u, and the lower order item B(x, u, △↓u) satisfies the subcritical growth (1.2). In particular, when F(x) ∈ L^q(Ω) and f(x) ∈ L^γ(Ω) with q,γ 〉 for any 1 〈 p 〈 +∞, we obtain interior HSlder continuity of any weak solution of (1.1) u with an index κ = min{1 - n/q, 1 - n/γ}.展开更多
基金Supported by the National Natural Science Foundation of China(49805005)by the research foundation of Northern Jiaotong University(2002SM061).
文摘For the generalized Beltrami system with two characteristic matrices, we deal with the regularity of its very weak solutions in the Sobolev class (1 < r < n). By changing the generalized Beltrami system into a class of a divergent elliptic system with nonhomogeneous items, we obtain that each of its very weak solutions is essentially a classical weak solution of a usual Sobolev class. Furthermore, we also establish a higher regularity of its weak solution if the regularity hypotheses of two characteristic matrices are improved.
基金Supported by National Natural Science Foundation of China(Grant No.11371050)
文摘In this paper, we prove a local HSlder estimate of (K1, K2)-quasiconformal mappings be- tween n-dimensional hypersurfaces of Rn+l under an assumption of bounded mean curvature of the original hypersurface M. With some new ingredients of the isoperimetric inequality and the co-area formula on manifolds, we extend Simon's work of quasiconformal mappings on surfaces of R3 to the setting of n-dimensional hypersurfaces of Rn+1.
基金National Natural Science Foundation of China (No.10671022)
文摘In this paper we establish an interior regularity of weak solution for quasi-linear degenerate elliptic equations under the subcritical growth if its coefficient matrix A(x, u) satisfies a VMO condition in the variable x uniformly with respect to all u, and the lower order item B(x, u, △↓u) satisfies the subcritical growth (1.2). In particular, when F(x) ∈ L^q(Ω) and f(x) ∈ L^γ(Ω) with q,γ 〉 for any 1 〈 p 〈 +∞, we obtain interior HSlder continuity of any weak solution of (1.1) u with an index κ = min{1 - n/q, 1 - n/γ}.