Silicon carbide is a technologically important material due to its superior mechanical and electronic properties. The understanding of defect production in helium-implanted silicon carbide is important for the vise of...Silicon carbide is a technologically important material due to its superior mechanical and electronic properties. The understanding of defect production in helium-implanted silicon carbide is important for the vise of this material in nuclear energy devices or for the proposed getting technique of electronic devices of silicon carbide. Much less is known about helium behavior in silicon carbide than in silicon and metals. Our recent study with transmission electron microscopy (TEM) indicated that the formation behavior of helium precipitates i.e.展开更多
The understanding of mechanisms of damage evolution in silicon carbide bombarded with energetic heliumions is important for the use of this material in future fusion reactors. One interesting result from our recentTEM...The understanding of mechanisms of damage evolution in silicon carbide bombarded with energetic heliumions is important for the use of this material in future fusion reactors. One interesting result from our recentTEM study of defect production in helium-implanted 4H-SiC is the rather high dose threshold for the forma-tion of nanometric helium bubbles This may supply an explanation for the observed defect depleted zone near the surface of silicon carbide. While the defect depleted zone is believed to be the reason of the high resistance of SiC nanocrystals and fibers to heavy irradiation.展开更多
文摘Silicon carbide is a technologically important material due to its superior mechanical and electronic properties. The understanding of defect production in helium-implanted silicon carbide is important for the vise of this material in nuclear energy devices or for the proposed getting technique of electronic devices of silicon carbide. Much less is known about helium behavior in silicon carbide than in silicon and metals. Our recent study with transmission electron microscopy (TEM) indicated that the formation behavior of helium precipitates i.e.
文摘The understanding of mechanisms of damage evolution in silicon carbide bombarded with energetic heliumions is important for the use of this material in future fusion reactors. One interesting result from our recentTEM study of defect production in helium-implanted 4H-SiC is the rather high dose threshold for the forma-tion of nanometric helium bubbles This may supply an explanation for the observed defect depleted zone near the surface of silicon carbide. While the defect depleted zone is believed to be the reason of the high resistance of SiC nanocrystals and fibers to heavy irradiation.