期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Superior CO2 uptake on nitrogen doped carbonaceous adsorbents from commercial phenolic resin 被引量:6
1
作者 shenfang liu Linli Rao +5 位作者 Pupu Yang Xinyi Wang Linlin Wang Rui Ma Limin Yue Xin Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第7期109-116,共8页
In this study,N-doped porous carbons were produced with commercial phenolic resin as the raw material,urea as the nitrogen source and KOH as the activation agent.Different from conventional carbonization-nitriding-act... In this study,N-doped porous carbons were produced with commercial phenolic resin as the raw material,urea as the nitrogen source and KOH as the activation agent.Different from conventional carbonization-nitriding-activation three-step method,a facile two-step process was explored to produce N-incorporated porous carbons.The as-obtained adsorbents hold superior CO2 uptake,i.e.5.01 and 7.47 mmol/g at 25℃and 0℃under 1 bar,respectively.The synergistic effects of N species on the surface and narrow micropores of the adsorbents decide their CO2 uptake under 25℃and atmospheric pressure.These phenolic resin-derived adsorbents also possess many extremely promising CO2 adsorption features like good recyclability,quick adsorption kinetics,modest heat of adsorption,great selectivity of CO2 over N2 and outstanding dynamic adsorption capacity.Cheap precursor,easy preparation strategy and excellent CO2 adsorption properties make these phenolic resin-derived N-doped carbonaceous adsorbents highly promising in CO2 capture. 展开更多
关键词 CO2 capture Nitrogen-doped porous carbon Commercial phenolic resin Facile preparation KOH activation
原文传递
Efficient nitrogen doped porous carbonaceous CO_(2) adsorbents based on lotus leaf 被引量:2
2
作者 Qian Li shenfang liu +3 位作者 Linlin Wang Fangyuan Chen Jiawei Shao Xin Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第5期268-278,共11页
In this work, the waste biomass lotus leaf was converted into N-doped porous carbonaceous CO_(2) adsorbents. The synthesis process includes carbonization of lotus leaf, melamine post-treatment and KOH activation. For ... In this work, the waste biomass lotus leaf was converted into N-doped porous carbonaceous CO_(2) adsorbents. The synthesis process includes carbonization of lotus leaf, melamine post-treatment and KOH activation. For the resultant sorbents, high nitrogen content can be contained due to the melamine modification and advanced porous structure were formed by KOH etching. These samples were carefully characterized by different techniques and their CO_(2) adsorption properties were investigated in detail. These sorbents hold good CO_(2) adsorption abilities, up to 3.87 and 5.89 mmol/g at 25 and 0 °C under 1 bar, respectively. By thorough investigation, the combined interplay of N content and narrow microporous volume was found to be responsible for the CO_(2) uptake for this series of sorbents. Together with the high CO_(2) adsorption abilities, these carbons also display excellent reversibility, high CO_(2)/N 2 selectivity, applicable heat of adsorption, fast CO_(2) adsorption kinetics and good dynamic CO_(2) adsorption capacity. This study reveals a universal method of obtaining N-doped porous carbonaceous sorbents from leaves. The low cost of raw materials accompanied by easy synthesis procedure disclose the enormous potential of leaves-based carbons in CO_(2) capture as well as many other applications. 展开更多
关键词 CO_(2)capture N-doped porous carbon Biomass materials MELAMINE KOH activation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部