期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Overview of the Biology of Reaction Wood Formation 被引量:15
1
作者 sheng du fukuju yamamoto 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第2期131-143,共13页
Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reacti... Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation. 展开更多
关键词 AUXIN cambial growth compression wood ETHYLENE GIBBERELLIN GRAVITROPISM indoleacetic acid plant hormone reaction wood tension wood.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部