Let τ be a premeasure on a complete separable metric space and let τ* be the Method I measure constructed from τ. We give conditions on T such that τ* has a regularity as follows: Every τ*-measurable set has ...Let τ be a premeasure on a complete separable metric space and let τ* be the Method I measure constructed from τ. We give conditions on T such that τ* has a regularity as follows: Every τ*-measurable set has measure equivalent to the supremum of premeasures of its compact subsets. Then we prove that the packing measure has this regularity if and only if the corresponding packing premeasure is locally finite.展开更多
Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) ...Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) is an A1 weight. Also, we show by an example that every Ahlfors d-regular space carries a measure which is d-homogeneous but not d-regular.展开更多
基金Supported by the Natural Science Foundation of China(10571063)The work is partly carried out in the Morningside Center of Mathematics,Chinese Academy of Sciences
文摘Let τ be a premeasure on a complete separable metric space and let τ* be the Method I measure constructed from τ. We give conditions on T such that τ* has a regularity as follows: Every τ*-measurable set has measure equivalent to the supremum of premeasures of its compact subsets. Then we prove that the packing measure has this regularity if and only if the corresponding packing premeasure is locally finite.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10971056 and 10771164)
文摘Let X be an Ahlfors d-regular space and rn a d-regular measure on X. We prove that a measure μ on X is d-homogeneous if and only if μ is mutually absolutely continuous with respect to m and the derivative Dmμ(x) is an A1 weight. Also, we show by an example that every Ahlfors d-regular space carries a measure which is d-homogeneous but not d-regular.