The results of data cube will occupy huge amount of disk space when the base table is of a large number of attributes. A new type of data cube, compact data cube like condensed cube and quotient cube, was proposed to ...The results of data cube will occupy huge amount of disk space when the base table is of a large number of attributes. A new type of data cube, compact data cube like condensed cube and quotient cube, was proposed to solve the problem. It compresses data cube dramatically. However, its query cost is so high that it cannot be used in most applications. This paper introduces the semi-closed cube to reduce the size of data cube and achieve almost the same query response time as the data cube does. Semi-closed cube is a generalization of condensed cube and quotient cube and is constructed from a quotient cube. When the query cost of quotient cube is higher than a given threshold, semi-closed cube selects some views and picks a fellow for each of them. All the tuples of those views are materialized except those closed by their fellows. To find a tuple of those views, users only need to scan the view and its fellow. Thus, their query performance is improved. Experiments were conducted using a real-world data set. The results show that semi-closed cube is an effective approach of data cube.展开更多
文摘The results of data cube will occupy huge amount of disk space when the base table is of a large number of attributes. A new type of data cube, compact data cube like condensed cube and quotient cube, was proposed to solve the problem. It compresses data cube dramatically. However, its query cost is so high that it cannot be used in most applications. This paper introduces the semi-closed cube to reduce the size of data cube and achieve almost the same query response time as the data cube does. Semi-closed cube is a generalization of condensed cube and quotient cube and is constructed from a quotient cube. When the query cost of quotient cube is higher than a given threshold, semi-closed cube selects some views and picks a fellow for each of them. All the tuples of those views are materialized except those closed by their fellows. To find a tuple of those views, users only need to scan the view and its fellow. Thus, their query performance is improved. Experiments were conducted using a real-world data set. The results show that semi-closed cube is an effective approach of data cube.