In this paper,we study the partial multi-label(PML)image classification problem,where each image is annotated with a candidate label set consisting of multiple relevant labels and other noisy labels.Existing PML metho...In this paper,we study the partial multi-label(PML)image classification problem,where each image is annotated with a candidate label set consisting of multiple relevant labels and other noisy labels.Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions,which unfortunately is unavailable in many real tasks.Furthermore,because the objective function for disambiguation is usually elaborately designed on the whole training set,it can hardly be optimized in a deep model with stochastic gradient descent(SGD)on mini-batches.In this paper,for the first time,we propose a deep model for PML to enhance the representation and discrimination ability.On the one hand,we propose a novel curriculum-based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes.On the other hand,consistency regularization is introduced for model training to balance fitting identified easy labels and exploiting potential relevant labels.Extensive experimental results on the commonly used benchmark datasets show that the proposed method significantlyoutperforms the SOTA methods.展开更多
In multi-label learning,it is rather expensive to label instances since they are simultaneously associated with multiple labels.Therefore,active learning,which reduces the labeling cost by actively querying the labels...In multi-label learning,it is rather expensive to label instances since they are simultaneously associated with multiple labels.Therefore,active learning,which reduces the labeling cost by actively querying the labels of the most valuable data,becomes particularly important for multi-label learning.A good multi-label active learning algorithm usually consists of two crucial elements:a reasonable criterion to evaluate the gain of querying the label for an instance,and an effective classification model,based on whose prediction the criterion can be accurately computed.In this paper,we first introduce an effective multi-label classification model by combining label ranking with threshold learning,which is incrementally trained to avoid retraining from scratch after every query.Based on this model,we then propose to exploit both uncertainty and diversity in the instance space as well as the label space,and actively query the instance-label pairs which can improve the classification model most.Extensive experiments on 20 datasets demonstrate the superiority of the proposed approach to state-of-the-art methods.展开更多
Multi-label learning is an effective framework for learning with objects that have multiple semantic labels, and has been successfully applied into many real-world tasks, In contrast with traditional single-label lear...Multi-label learning is an effective framework for learning with objects that have multiple semantic labels, and has been successfully applied into many real-world tasks, In contrast with traditional single-label learning, the cost of la- beling a multi-label example is rather high, thus it becomes an important task to train an effective multi-label learning model with as few labeled examples as possible. Active learning, which actively selects the most valuable data to query their labels, is the most important approach to reduce labeling cost. In this paper, we propose a novel approach MADM for batch mode multi-label active learning. On one hand, MADM exploits representativeness and diversity in both the feature and label space by matching the distribution between labeled and unlabeled data. On the other hand, it tends to query predicted positive instances, which are expected to be more informative than negative ones. Experiments on benchmark datasets demonstrate that the proposed approach can reduce the labeling cost significantly.展开更多
文摘In this paper,we study the partial multi-label(PML)image classification problem,where each image is annotated with a candidate label set consisting of multiple relevant labels and other noisy labels.Existing PML methods typically design a disambiguation strategy to filter out noisy labels by utilizing prior knowledge with extra assumptions,which unfortunately is unavailable in many real tasks.Furthermore,because the objective function for disambiguation is usually elaborately designed on the whole training set,it can hardly be optimized in a deep model with stochastic gradient descent(SGD)on mini-batches.In this paper,for the first time,we propose a deep model for PML to enhance the representation and discrimination ability.On the one hand,we propose a novel curriculum-based disambiguation strategy to progressively identify ground-truth labels by incorporating the varied difficulties of different classes.On the other hand,consistency regularization is introduced for model training to balance fitting identified easy labels and exploiting potential relevant labels.Extensive experimental results on the commonly used benchmark datasets show that the proposed method significantlyoutperforms the SOTA methods.
基金This research was supported by the National Natural Science Foundation of China under Grant No.61906089the Aerospace Power Funds of China under Grant No.6141B09050342+1 种基金the Fundamental Research Funds for the Central Universities of China under Grant No.NE2019104the Jiangsu Foundation under Grant No.BK20190408.
文摘In multi-label learning,it is rather expensive to label instances since they are simultaneously associated with multiple labels.Therefore,active learning,which reduces the labeling cost by actively querying the labels of the most valuable data,becomes particularly important for multi-label learning.A good multi-label active learning algorithm usually consists of two crucial elements:a reasonable criterion to evaluate the gain of querying the label for an instance,and an effective classification model,based on whose prediction the criterion can be accurately computed.In this paper,we first introduce an effective multi-label classification model by combining label ranking with threshold learning,which is incrementally trained to avoid retraining from scratch after every query.Based on this model,we then propose to exploit both uncertainty and diversity in the instance space as well as the label space,and actively query the instance-label pairs which can improve the classification model most.Extensive experiments on 20 datasets demonstrate the superiority of the proposed approach to state-of-the-art methods.
文摘Multi-label learning is an effective framework for learning with objects that have multiple semantic labels, and has been successfully applied into many real-world tasks, In contrast with traditional single-label learning, the cost of la- beling a multi-label example is rather high, thus it becomes an important task to train an effective multi-label learning model with as few labeled examples as possible. Active learning, which actively selects the most valuable data to query their labels, is the most important approach to reduce labeling cost. In this paper, we propose a novel approach MADM for batch mode multi-label active learning. On one hand, MADM exploits representativeness and diversity in both the feature and label space by matching the distribution between labeled and unlabeled data. On the other hand, it tends to query predicted positive instances, which are expected to be more informative than negative ones. Experiments on benchmark datasets demonstrate that the proposed approach can reduce the labeling cost significantly.