Quantum dots(QDs)based heterojunction is a candidate for the photocatalytic CO_(2)reduction,owing to the large extinction coefficient and easy modification of band structures.However,the van der Waals interaction caus...Quantum dots(QDs)based heterojunction is a candidate for the photocatalytic CO_(2)reduction,owing to the large extinction coefficient and easy modification of band structures.However,the van der Waals interaction causes the large charge resistance and strong recombination centers between QDs and host materials,which makes the poor photocatalytic performance.Herein,a covalent bonded CdSeTeQDs and NH_(2)-UiO-66 heterojunction(NUC-x)is constructed through an acylamino(-CONH-).The results indicate that the acylamino between NH_(2)-UiO-66 and Cd Se Te QDs can serve as the transfer channels for the photogenerated charges and stabilize the QDs.The optimized NUC-1200 achieved a CO generation rate of 228.68μmol/g,which is 13 and 4 times higher than that of NH_(2)-UiO-66 and Cd Se Te QDs,respectively.This work provides a new avenue for efficient and stable photocatalysis of QDs.展开更多
Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is...Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is practiced separately since they require very different reaction conditions.In this review,we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery(WT-ERR).Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO_(2)conversion,H_(2)production and heavy metal recovery are summarized.Besides,the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented.The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery.Although in its infancy,the reviewed technology provides new avenue for developing next-generation wastewater treatment process.Moreover,we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery.展开更多
A facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide(CdS)nanoparticles on CTF-1,a covalent triazine-based frameworks(CTFs).In this system,CTF-1 not only ac...A facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide(CdS)nanoparticles on CTF-1,a covalent triazine-based frameworks(CTFs).In this system,CTF-1 not only acted as supporter but also served as photocatalyst and electron donor.The performance of the obtained CdS deposited CTF-1(CdS-CTF-1)nanocomposite was evaluated by H2 evolution reaction under visible light irradiation.As a result,CdS-CTF-1 exhibited high H2 production from water,far surpassing the Cd S/CTF-1 nanocomposite,in which Cd S was deposited via solvothermal method.The high activity of CdS-CTF-1 was attributed to the confined Cd S nanoparticles with small size,leading to expose more active sites.In addition,time-resolved spectroscopy indicated that the superior performance of Cd S-CTF-1 also can be ascribed to the fast electron transfer rate and injection efficiency(KET=0.18×10^9 s^-1,ηinj=39.38%)between Cd S and CTF-1 layers,which are 3.83 times faster and 4.84 times higher than that of Cd S/CTF-1 nanocomposite.This work represents the first example on using covalent organic frameworks(COFs)as a support and electron-donor for fabricating novel Cd S-COF nanocomposite system and its potential application in solar energy transformations.展开更多
基金the financial support of the National Natural Science Foundation of China(Nos.52100186 and 52170082)the Natural Science Foundation of Jiangxi Province(No.20212ACB203008)。
文摘Quantum dots(QDs)based heterojunction is a candidate for the photocatalytic CO_(2)reduction,owing to the large extinction coefficient and easy modification of band structures.However,the van der Waals interaction causes the large charge resistance and strong recombination centers between QDs and host materials,which makes the poor photocatalytic performance.Herein,a covalent bonded CdSeTeQDs and NH_(2)-UiO-66 heterojunction(NUC-x)is constructed through an acylamino(-CONH-).The results indicate that the acylamino between NH_(2)-UiO-66 and Cd Se Te QDs can serve as the transfer channels for the photogenerated charges and stabilize the QDs.The optimized NUC-1200 achieved a CO generation rate of 228.68μmol/g,which is 13 and 4 times higher than that of NH_(2)-UiO-66 and Cd Se Te QDs,respectively.This work provides a new avenue for efficient and stable photocatalysis of QDs.
基金financially supported by the National Natural Science Foundation of China(Nos.52000097,51878325,51868050 and 51938007)the Natural Science Foundation of Jiangxi Province(Nos.20192BAB213011 and 20192ACBL21046)+1 种基金the Ph.D.research startup foundation of Nanchang Hangkong University(No.EA201802367)the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment(No.SKLPEE-KF202106),Fuzhou University。
文摘Wastewater management and energy/resource recycling have been extensively investigated via photo(electro)catalysis.Although both operation processes are driven effectively by the same interfacial charge,each system is practiced separately since they require very different reaction conditions.In this review,we showcase the recent advancements in photo(electro)catalytic process that enables the wastewater treatment and simultaneous energy/resource recovery(WT-ERR).Various literatures based on photo(electro)catalysis for wastewater treatment coupled with CO_(2)conversion,H_(2)production and heavy metal recovery are summarized.Besides,the fundamentals of photo(electro)catalysis and the influencing factors in such synergistic process are also presented.The essential feature of the catalysis lies in effectively utilizing hole oxidation for pollutant degradation and electron reduction for energy/resource recovery.Although in its infancy,the reviewed technology provides new avenue for developing next-generation wastewater treatment process.Moreover,we expect that this review can stimulate intensive researches to rationally design photo(electro)catalytic systems for environmental remediation accompanied with energy and resource recovery.
基金financially supported by the National Natural Science Foundation of China(51938007,51878325,51868050,51622806 and 51868052)the Natural Science Foundation of Jiangxi Province(20162BCB22017,20165BCB18008,20171ACB20017,and 20171BAB206049)+1 种基金the Ph.D.research startup foundation of Nanchang Hangkong University(EA201802367)the foundation of Jiangxi Scientific Committee(DA201902167)for financial support.
文摘A facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide(CdS)nanoparticles on CTF-1,a covalent triazine-based frameworks(CTFs).In this system,CTF-1 not only acted as supporter but also served as photocatalyst and electron donor.The performance of the obtained CdS deposited CTF-1(CdS-CTF-1)nanocomposite was evaluated by H2 evolution reaction under visible light irradiation.As a result,CdS-CTF-1 exhibited high H2 production from water,far surpassing the Cd S/CTF-1 nanocomposite,in which Cd S was deposited via solvothermal method.The high activity of CdS-CTF-1 was attributed to the confined Cd S nanoparticles with small size,leading to expose more active sites.In addition,time-resolved spectroscopy indicated that the superior performance of Cd S-CTF-1 also can be ascribed to the fast electron transfer rate and injection efficiency(KET=0.18×10^9 s^-1,ηinj=39.38%)between Cd S and CTF-1 layers,which are 3.83 times faster and 4.84 times higher than that of Cd S/CTF-1 nanocomposite.This work represents the first example on using covalent organic frameworks(COFs)as a support and electron-donor for fabricating novel Cd S-COF nanocomposite system and its potential application in solar energy transformations.