Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+und...Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.展开更多
We present the photoelectron momentum distributions(PMDs) and the photoelectron angular distributions(PADs) of He+ ions, aligned H2+ molecules and N2 molecules by intense orthogonally polarized laser pulses. Simulatio...We present the photoelectron momentum distributions(PMDs) and the photoelectron angular distributions(PADs) of He+ ions, aligned H2+ molecules and N2 molecules by intense orthogonally polarized laser pulses. Simulations are performed by numerically solving the corresponding two-dimensional time-dependent Schr?dinger equations(TDSEs) within the single-electron approximation frame. Photoelectron momentum distributions and photoelectron angular distributions present different patterns with the time delays Td, illustrating the dependences of the PMDs and PADs on the time delays by orthogonally polarized laser pulses. The evolution of the electron wavepackets can be employed to describe the intensity of the PADs from the TDSE simulations for N2 molecules.展开更多
We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by com...We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by combining constructing block diagonal matrices through using the real space product formula(RSPF) with splitting out diagonal sub-matrices for short iterative Lanczos(SIL) propagator. The numerical implementation of the solver guarantees efficient parallel computing for the simulation of real physical problems such as high harmonic generation(HHG) in these interaction systems.展开更多
We investigate theoretically the photoionization of triatomic molecular ion H_(3)^(2+) by numerically solving the two-dimensional time-dependent Schrödinger equations under Bohn-Oppenheimer approximation.The resu...We investigate theoretically the photoionization of triatomic molecular ion H_(3)^(2+) by numerically solving the two-dimensional time-dependent Schrödinger equations under Bohn-Oppenheimer approximation.The results show that the photoelectron momentum distributions(PMDs)of H_(3)^(2+) with different initial states are strongly dependent on the laser ellipticities and molecular orbital symmetry,and the PMDs of degenerate electronic states E^(±)are mirror images.Also,for degenerate electronic states E^(±),vortex structures appear in the PMDs by the counter-rotating circularly polarized laser pulses as the time delay between the two pulses increases,which can be explained by multicenter ionization and ultrafast photoionization model.展开更多
Continuum wavepacket interference is investigated by numerically solving the time-dependent SchrSdinger equation for the interaction of hydrogen atoms with laser fields. The obtained wavepacket evolution indicates tha...Continuum wavepacket interference is investigated by numerically solving the time-dependent SchrSdinger equation for the interaction of hydrogen atoms with laser fields. The obtained wavepacket evolution indicates that, in the over-the-barrier ionization regime (1016 W/cm2), the continuum-continuum (CC) interference of ionizing electrons becomes the main process in high- order harmonics generation (HHG), compared with continuum-bound (CB) transition, as reported by Kohler et al. [Phys. Rev. Lett. 105(20), 203902 (2010)]. We propose a two-color laser field scheme for controlling the quantum trajectories of ionizing electrons and for extending the CC harmonic energy. As a result, a high energy platform occurs in the HHG spectrum, which entirely originates from the CC harmonics, with a cutoff adjustable by the relative phase of the two-color fields. This provides further understanding of the dynamic feature of atoms and molecules in super intense laser fields and provides an opportunity to image the atomic or molecular potential.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11374124)
文摘Coherent control of fragmentation of CH_3I using shaped femtosecond pulse train is investigated.The dissociation processes can be modulated by changing the separation of the shaped pulse train, and the yield of I^+under the irradiation of the optimal pulse is significantly increased compared with that using the transform-limited pulse.We discuss the control mechanism of dissociation processes with coherent interference in time domain.A three-pulse control model is proposed to explain the counterintuitive experimental results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074146,21827805,11974007,and 12074142)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)。
文摘We present the photoelectron momentum distributions(PMDs) and the photoelectron angular distributions(PADs) of He+ ions, aligned H2+ molecules and N2 molecules by intense orthogonally polarized laser pulses. Simulations are performed by numerically solving the corresponding two-dimensional time-dependent Schr?dinger equations(TDSEs) within the single-electron approximation frame. Photoelectron momentum distributions and photoelectron angular distributions present different patterns with the time delays Td, illustrating the dependences of the PMDs and PADs on the time delays by orthogonally polarized laser pulses. The evolution of the electron wavepackets can be employed to describe the intensity of the PADs from the TDSE simulations for N2 molecules.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534004,11627807,11774131,and 11774130)the Scientific and Technological Project of Jilin Provincial Education Department in the Thirteenth Five-Year Plan,China(Grant No.JJKH20170538KJ)
文摘We present a parallel numerical method of simulating the interaction of atoms with a strong laser field by solving the time-depending Schr?dinger equation(TDSE) in spherical coordinates. This method is realized by combining constructing block diagonal matrices through using the real space product formula(RSPF) with splitting out diagonal sub-matrices for short iterative Lanczos(SIL) propagator. The numerical implementation of the solver guarantees efficient parallel computing for the simulation of real physical problems such as high harmonic generation(HHG) in these interaction systems.
文摘We investigate theoretically the photoionization of triatomic molecular ion H_(3)^(2+) by numerically solving the two-dimensional time-dependent Schrödinger equations under Bohn-Oppenheimer approximation.The results show that the photoelectron momentum distributions(PMDs)of H_(3)^(2+) with different initial states are strongly dependent on the laser ellipticities and molecular orbital symmetry,and the PMDs of degenerate electronic states E^(±)are mirror images.Also,for degenerate electronic states E^(±),vortex structures appear in the PMDs by the counter-rotating circularly polarized laser pulses as the time delay between the two pulses increases,which can be explained by multicenter ionization and ultrafast photoionization model.
基金Acknowledgements This work was supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CB922200) and the National Natural Science Foundation of China (Grants Nos. 1127403, 11274141, and 11534004). We also acknowledge the High Performance Computing Center (HPCC) of Jilin University for supercomputer time.
文摘Continuum wavepacket interference is investigated by numerically solving the time-dependent SchrSdinger equation for the interaction of hydrogen atoms with laser fields. The obtained wavepacket evolution indicates that, in the over-the-barrier ionization regime (1016 W/cm2), the continuum-continuum (CC) interference of ionizing electrons becomes the main process in high- order harmonics generation (HHG), compared with continuum-bound (CB) transition, as reported by Kohler et al. [Phys. Rev. Lett. 105(20), 203902 (2010)]. We propose a two-color laser field scheme for controlling the quantum trajectories of ionizing electrons and for extending the CC harmonic energy. As a result, a high energy platform occurs in the HHG spectrum, which entirely originates from the CC harmonics, with a cutoff adjustable by the relative phase of the two-color fields. This provides further understanding of the dynamic feature of atoms and molecules in super intense laser fields and provides an opportunity to image the atomic or molecular potential.