The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical proper...The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.展开更多
Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-S...Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-SiOx:H layers on different orientated c-Si substrates are fabricated. An optimal effective lifetime(τ(eff)) of 4743 μs and corresponding implied opencircuit voltage(iV(oc)) of 724 mV are obtained on〈100〉-orientated c-Si wafers. While τ(eff) of 2429 μs and iV_(oc) of 699 mV are achieved on 111-orientated substrate. The FTIR and XPS results indicate that the a-SiOx:H network consists of SiOx(Si-rich), Si–OH, Si–O–SiHx, SiO2 ≡ Si–Si, and O3 ≡ Si–Si. A passivation evolution mechanism is proposed to explain the different passivation results on different c-Si wafers. By modulating the a-SiOx:H layer, the planar silicon heterojunction solar cell can achieve an efficiency of 18.15%.展开更多
Ti–Cu–N films were deposited on 316 L stainless steel substrates by magnetic field-enhanced arc ion plating.The effect of substrate pulse bias duty cycle on the chemical composition,microstructure,surface morphology...Ti–Cu–N films were deposited on 316 L stainless steel substrates by magnetic field-enhanced arc ion plating.The effect of substrate pulse bias duty cycle on the chemical composition,microstructure,surface morphology,mechanical and tribological properties of the films was systemically investigated.The results showed that,with increasing the duty cycle,Cu content decreases from 3.3 to 0.58 at.%.XRD results showed that only Ti N phase is observed for all the deposited films and the preferred orientation transformed from Ti N(200) to Ti N(111) plane with the increase in duty cycle.The surface roughness and deposition rate showed monotonous decrease with increasing the duty cycle.The residual stress and hardness firstly increase and then decrease afterwards with the increase in duty cycle,while the variation of critical load shows reverse trend.Except for the film with duty cycle of 10%,others perform the better wear resistance.展开更多
基金Projects(51401128,51275095) supported by the National Natural Science Foundation of ChinaProject(SKLRS-2013-MS-03) supported by the Open Fund from the State Key Laboratory of Robotics and System,China
文摘The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.
基金Project supported by the National Key Research and Deveopment Program of China(Grant No.2018YFB1500402)the National Natural Science Foundation of China(Grant Nos.61674084 and 61874167)+5 种基金the Fundamental Research Funds for Central Universities,Chinathe Natural Science Foundation of Tianjin City,China(Grant No.17JCYBJC41400)the Open Fund of the Key Laboratory of Optical Information Science&Technology of Ministry of Education of China(Grant No.2017KFKT014)the 111 Project,China(Grant No.B16027)the International Cooperation Base,China(Grant No.2016D01025)Tianjin International Joint Research and Development Center,China。
文摘Hydrogenated amorphous silicon oxide(a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction(SHJ) solar cells. In this paper, a-SiOx:H layers on different orientated c-Si substrates are fabricated. An optimal effective lifetime(τ(eff)) of 4743 μs and corresponding implied opencircuit voltage(iV(oc)) of 724 mV are obtained on〈100〉-orientated c-Si wafers. While τ(eff) of 2429 μs and iV_(oc) of 699 mV are achieved on 111-orientated substrate. The FTIR and XPS results indicate that the a-SiOx:H network consists of SiOx(Si-rich), Si–OH, Si–O–SiHx, SiO2 ≡ Si–Si, and O3 ≡ Si–Si. A passivation evolution mechanism is proposed to explain the different passivation results on different c-Si wafers. By modulating the a-SiOx:H layer, the planar silicon heterojunction solar cell can achieve an efficiency of 18.15%.
基金supported by the National Natural Science Foundation of China(Grant No.51401128)Shenzhen Science and Technology Project(No.JCYJ20140508155916426)
文摘Ti–Cu–N films were deposited on 316 L stainless steel substrates by magnetic field-enhanced arc ion plating.The effect of substrate pulse bias duty cycle on the chemical composition,microstructure,surface morphology,mechanical and tribological properties of the films was systemically investigated.The results showed that,with increasing the duty cycle,Cu content decreases from 3.3 to 0.58 at.%.XRD results showed that only Ti N phase is observed for all the deposited films and the preferred orientation transformed from Ti N(200) to Ti N(111) plane with the increase in duty cycle.The surface roughness and deposition rate showed monotonous decrease with increasing the duty cycle.The residual stress and hardness firstly increase and then decrease afterwards with the increase in duty cycle,while the variation of critical load shows reverse trend.Except for the film with duty cycle of 10%,others perform the better wear resistance.