Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy wea...Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau.展开更多
[Objeective] The research aimed to study the types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Rail- way. [ Method]Types, distributions and characteristics of vegetation and soil alo...[Objeective] The research aimed to study the types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Rail- way. [ Method]Types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Railway were studied by field investigation meth- od. [Result] The vegetation along Qinghai -Tibet Railway was dominated by alpine grassland and meadow, while the soil was dominated by alpine steppe soil and meadow soil corresponding along the railway. They both concentrated distnbutions at the section from Kunlun Mountain to Nyainqen- tanglha Mountain. [ Conclusion] The research could provide the basis for disaster control and resource development of Qinghai-Tibet Railway.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.41401611)the China Postdoctoral Science Foundation(Grant Nos.2014M560817 and 2015T81069)+1 种基金one of Special Fund for Forest Scientific Research in the Public Welfare(201504401)the Science and Technology Program of Gansu Province(Grant No.145RJZA118)
文摘Intense freezing and thawing actions occur in the Qinghai-Tibet Plateau because of its high elevation and cold temperature. The plateau's unique environment makes it easy to generate wind erosion under dry, windy weather conditions, resulting in the emergence ofdesertification. As a major form of freeze-thaw erosion, freeze-thaw and wind erosion is displayed prominently on the Qinghai-Tibet Plateau. Therefore, in this study, soil samples were collected from the surface of the plateau to undergo freeze-thaw and wind erosion simulation experiments. Results show that wind erosion strength increases with an increasing number of freeze-thaw cycles, water content in the freezing-thawing process, and the difference in freeze-thaw temperatures. Therefore, in the conditions of water participation, the main reason for the freeze-thaw and wind erosion in the Qinghai-Tibet Plateau is the damage to the soil structure by repeated, fierce freeze-thaw actions, and the sand-bearing wind is the main driving force for this process. The research results have theoretical significance for exploring the formation mechanism of freeze-thaw and wind erosion in the Qinghai-Tibet Plateau, and provide a scientific basis for freeze-thaw desertification control in the plateau.
基金Supported by the Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(51Y351121)National Natural ScienceFoundation of China(40930741)the Knowledge Innovation Projectof Chinese Academy of Sciences(KZCX2-YW-329)
文摘[Objeective] The research aimed to study the types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Rail- way. [ Method]Types, distributions and characteristics of vegetation and soil along Qinghai -Tibet Railway were studied by field investigation meth- od. [Result] The vegetation along Qinghai -Tibet Railway was dominated by alpine grassland and meadow, while the soil was dominated by alpine steppe soil and meadow soil corresponding along the railway. They both concentrated distnbutions at the section from Kunlun Mountain to Nyainqen- tanglha Mountain. [ Conclusion] The research could provide the basis for disaster control and resource development of Qinghai-Tibet Railway.